Suppr超能文献

通过设计孔隙率改善电纺纤维中的细胞浸润。

Improved cellular infiltration in electrospun fiber via engineered porosity.

作者信息

Nam Jin, Huang Yan, Agarwal Sudha, Lannutti John

机构信息

Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, USA.

出版信息

Tissue Eng. 2007 Sep;13(9):2249-57. doi: 10.1089/ten.2006.0306.

Abstract

Small pore sizes inherent to electrospun matrices can hinder efficient cellular ingrowth. To facilitate infiltration while retaining its extracellular matrix-like character, electrospinning was combined with salt leaching to produce a scaffold having deliberate, engineered delaminations. We made elegant use of a specific randomizing component of the electrospinning process, the Taylor Cone and the falling fiber beneath it, to produce a uniform, well-spread distribution of salt particles. After 3 weeks of culture, up to 4 mm of cellular infiltration was observed, along with cellular coverage of up to 70% within the delaminations. To our knowledge, this represents the first observation of extensive cellular infiltration of electrospun matrices. Infiltration appears to be driven primarily by localized proliferation rather than coordinated cellular locomotion. Cells also moved from the salt-generated porosity into the surrounding electrospun fiber matrix. Given that the details of salt deposition (amount, size, and number density) are far from optimized, the result provides a convincing illustration of the ability of mammalian cells to interact with appropriately tailored electrospun matrices. These layered structures can be precisely fabricated by varying the deposition interval and particle size conceivably to produce in vivo-like gradients in porosity such that the resulting scaffolds better resemble the desired final structure.

摘要

电纺基质固有的小孔径会阻碍细胞的有效向内生长。为了在保持其细胞外基质样特性的同时促进渗透,将电纺与盐沥滤相结合,以制备具有特意设计分层的支架。我们巧妙地利用了电纺过程中的一个特定随机成分,即泰勒锥及其下方下落的纤维,来产生盐颗粒的均匀、分布良好的分布。培养3周后,观察到细胞向内生长高达4毫米,分层内的细胞覆盖率高达70%。据我们所知,这是首次观察到电纺基质中广泛的细胞向内生长。向内生长似乎主要由局部增殖驱动,而不是由协调的细胞运动驱动。细胞也从盐产生的孔隙迁移到周围的电纺纤维基质中。鉴于盐沉积的细节(数量、大小和数密度)远未优化,该结果令人信服地说明了哺乳动物细胞与适当定制的电纺基质相互作用的能力。通过改变沉积间隔和颗粒大小,可以精确制造这些分层结构,从而在孔隙率方面产生类似体内的梯度,使得所得支架更类似于所需的最终结构。

相似文献

1
Improved cellular infiltration in electrospun fiber via engineered porosity.
Tissue Eng. 2007 Sep;13(9):2249-57. doi: 10.1089/ten.2006.0306.
2
Macroporosity enhances vascularization of electrospun scaffolds.
J Surg Res. 2013 Jul;183(1):18-26. doi: 10.1016/j.jss.2013.01.005. Epub 2013 Feb 1.
5
Engineering the microstructure of electrospun fibrous scaffolds by microtopography.
Biomacromolecules. 2013 May 13;14(5):1349-60. doi: 10.1021/bm302000n. Epub 2013 Apr 25.
7
Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique.
J Biomed Mater Res B Appl Biomater. 2014 May;102(4):651-8. doi: 10.1002/jbm.b.33043. Epub 2013 Oct 24.
8
Electrospun bilayer fibrous scaffolds for enhanced cell infiltration and vascularization in vivo.
Acta Biomater. 2015 Feb;13:131-41. doi: 10.1016/j.actbio.2014.11.014. Epub 2014 Nov 15.
10
Increasing the pore size of electrospun scaffolds.
Tissue Eng Part B Rev. 2011 Oct;17(5):365-72. doi: 10.1089/ten.teb.2011.0235. Epub 2011 Aug 4.

引用本文的文献

4
An In Vitro Model of the Blood-Brain Barrier for the Investigation and Isolation of the Key Drivers of Barriergenesis.
Adv Healthc Mater. 2024 Dec;13(32):e2303777. doi: 10.1002/adhm.202303777. Epub 2024 Aug 5.
5
Electrospun Polycaprolactone Membranes Expanded with Chitosan Granules for Cell Infiltration.
Polymers (Basel). 2024 Feb 15;16(4):527. doi: 10.3390/polym16040527.
6
Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds.
Prog Mater Sci. 2023 Oct;139. doi: 10.1016/j.pmatsci.2023.101173. Epub 2023 Jul 26.
7
Toward a New Generation of Bio-Scaffolds for Neural Tissue Engineering: Challenges and Perspectives.
Pharmaceutics. 2023 Jun 16;15(6):1750. doi: 10.3390/pharmaceutics15061750.
8
Overview of Electrospinning for Tissue Engineering Applications.
Polymers (Basel). 2023 May 23;15(11):2418. doi: 10.3390/polym15112418.
9
Unveiling the Mechanism of the Formation of 3D Fiber Macroassemblies with Controlled Properties.
ACS Nano. 2023 Apr 11;17(7):6800-6810. doi: 10.1021/acsnano.3c00289. Epub 2023 Mar 29.
10
Recent Tissue Engineering Approaches to Mimicking the Extracellular Matrix Structure for Skin Regeneration.
Biomimetics (Basel). 2023 Mar 22;8(1):130. doi: 10.3390/biomimetics8010130.

本文引用的文献

1
Electrospun anisotropic architectures and porous structures for tissue engineering.
J Mater Chem B. 2015 Jul 21;3(27):5389-5410. doi: 10.1039/c5tb00472a. Epub 2015 Jun 10.
3
An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing.
J Mater Chem B. 2015 May 28;3(20):4105-4117. doi: 10.1039/c5tb00393h. Epub 2015 May 5.
4
Electroactive nanofibrous biomimetic scaffolds by thermally induced phase separation.
J Mater Chem B. 2014 Sep 28;2(36):6119-6130. doi: 10.1039/c4tb00493k. Epub 2014 Aug 11.
5
Tailoring the void space and mechanical properties in electrospun scaffolds towards physiological ranges.
J Mater Chem B. 2014 Jan 21;2(3):305-313. doi: 10.1039/c3tb20995d. Epub 2013 Nov 28.
7
Novel Textile Scaffolds Generated by Flock Technology for Tissue Engineering of Bone and Cartilage.
Materials (Basel). 2012 Mar 22;5(3):540-557. doi: 10.3390/ma5030540.
8
Electrospun 3D Fibrous Scaffolds for Chronic Wound Repair.
Materials (Basel). 2016 Apr 6;9(4):272. doi: 10.3390/ma9040272.
9
Technological advances in electrospinning of nanofibers.
Sci Technol Adv Mater. 2011 Jan 12;12(1):013002. doi: 10.1088/1468-6996/12/1/11660944. eCollection 2011 Feb.
10
Three dimensional poly(ε-caprolactone) and silk fibroin nanocomposite fibrous matrix for artificial dermis.
Mater Sci Eng C Mater Biol Appl. 2016 Nov 1;68:758-767. doi: 10.1016/j.msec.2016.06.019. Epub 2016 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验