Suppr超能文献

磷霉素抗性蛋白FosA中谷胱甘肽结合与激活的模型。

A model for glutathione binding and activation in the fosfomycin resistance protein, FosA.

作者信息

Rigsby Rachel E, Brown Daniel W, Dawson Eric, Lybrand Terry P, Armstrong Richard N

机构信息

Department of Chemistry and The Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.

出版信息

Arch Biochem Biophys. 2007 Aug 15;464(2):277-83. doi: 10.1016/j.abb.2007.04.035. Epub 2007 May 14.

Abstract

The genomically encoded fosfomycin resistance protein from Pseudomonas aeruginosa (FosA(PA)) utilizes Mn(II) and K(+) to catalyze the addition of glutathione (GSH) to C1 of the antibiotic rendering it inactive. Although this protein has been structurally and kinetically characterized with respect to the substrate, fosfomycin, questions remain regarding how the enzyme binds the thiol substrate, GSH. Computational studies have revealed a potential GSH binding site in FosA(PA) that involves six electrostatic or hydrogen-bonding interactions with protein side-chains as well as six additional residues that contribute van der Waals interactions. A strategically placed tyrosine residue, Y39, appears to be involved in the ionization of GSH during catalysis. The Y39F mutant exhibits a 13-fold reduction of catalytic activity (k(cat)=14+/-2s(-1)), suggesting a role in the ionization of GSH. Mutation of five other residues (W34, Q36, S50, K90, and R93) implicated in ionic of hydrogen-bonding interactions resulted in enzymes with reduced catalytic efficiency, affinity for GSH, or both. The mutant enzymes were also found to be less effective resistant proteins in the biological context of Escherichia coli. The more conservative W34H mutant has native-like catalytic efficiency suggesting that the imidazole NH group can replace the indole group of W34 that is important for GSH binding. In the absence of co-crystal structural data with the thiol substrate, these results provide important insights into the role of GSH in catalysis.

摘要

铜绿假单胞菌的基因组编码磷霉素抗性蛋白(FosA(PA))利用Mn(II)和K(+)催化谷胱甘肽(GSH)添加到抗生素的C1位,使其失活。尽管该蛋白在底物磷霉素方面已进行了结构和动力学表征,但关于该酶如何结合硫醇底物GSH仍存在疑问。计算研究揭示了FosA(PA)中一个潜在的GSH结合位点,该位点涉及与蛋白质侧链的六个静电或氢键相互作用以及另外六个贡献范德华相互作用的残基。一个位置关键的酪氨酸残基Y39似乎在催化过程中参与了GSH的离子化。Y39F突变体的催化活性降低了13倍(k(cat)=14±2 s(-1)),表明其在GSH离子化中起作用。其他五个与氢键相互作用的离子化相关残基(W34、Q36、S50、K90和R93)发生突变后,产生的酶催化效率降低、对GSH的亲和力降低或两者皆有。在大肠杆菌的生物学背景下,还发现这些突变酶作为抗性蛋白的效果较差。保守性更高的W34H突变体具有类似天然的催化效率,这表明咪唑NH基团可以取代对GSH结合很重要的W34的吲哚基团。在没有与硫醇底物的共晶体结构数据的情况下,这些结果为GSH在催化中的作用提供了重要见解。

相似文献

引用本文的文献

3

本文引用的文献

6
Predicting the evolution of antibiotic resistance genes.预测抗生素抗性基因的演变。
Nat Rev Microbiol. 2004 May;2(5):430-5. doi: 10.1038/nrmicro888.
7
Where will new antibiotics come from?新型抗生素将从何而来?
Nat Rev Microbiol. 2003 Oct;1(1):65-70. doi: 10.1038/nrmicro727.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验