Zeniou-Meyer Maria, Zabari Naama, Ashery Uri, Chasserot-Golaz Sylvette, Haeberlé Anne-Marie, Demais Valérie, Bailly Yannick, Gottfried Irit, Nakanishi Hideki, Neiman Aaron M, Du Guangwei, Frohman Michael A, Bader Marie-France, Vitale Nicolas
Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives, CNRS and Université Louis Pasteur, 5 rue Blaise Pascal, Strasbourg, France.
J Biol Chem. 2007 Jul 27;282(30):21746-57. doi: 10.1074/jbc.M702968200. Epub 2007 May 31.
Substantial efforts have recently been made to demonstrate the importance of lipids and lipid-modifying enzymes in various membrane trafficking processes, including calcium-regulated exocytosis of hormones and neurotransmitters. Among bioactive lipids, phosphatidic acid (PA) is an attractive candidate to promote membrane fusion through its ability to change membrane topology. To date, however, the biosynthetic pathway, the dynamic location, and actual function of PA in secretory cells remain unknown. Using a short interference RNA strategy on chromaffin and PC12 cells, we demonstrate here that phospholipase D1 is activated in secretagogue-stimulated cells and that it produces PA at the plasma membrane at the secretory granule docking sites. We show that phospholipase D1 activation and PA production represent key events in the exocytotic progression. Membrane capacitance measurements indicate that reduction of endogenous PA impairs the formation of fusion-competent granules. Finally, we show that the PLD1 short interference RNA-mediated inhibition of exocytosis can be rescued by exogenous provision of a lipid that favors the transition of opposed bi-layer membranes to hemifused membranes having the outer leaflets fused. Our findings demonstrate that PA synthesis is required during exocytosis to facilitate a late event in the granule fusion pathway. We propose that the underlying mechanism is related to the ability of PA to alter membrane curvature and promote hemi-fusion.
最近人们付出了巨大努力来证明脂质和脂质修饰酶在各种膜运输过程中的重要性,包括激素和神经递质的钙调节性胞吐作用。在生物活性脂质中,磷脂酸(PA)因其改变膜拓扑结构的能力而成为促进膜融合的一个有吸引力的候选者。然而,迄今为止,PA在分泌细胞中的生物合成途径、动态定位和实际功能仍然未知。我们在嗜铬细胞和PC12细胞上采用短干扰RNA策略,在此证明磷脂酶D1在促分泌剂刺激的细胞中被激活,并且它在分泌颗粒停靠位点的质膜上产生PA。我们表明磷脂酶D1的激活和PA的产生代表了胞吐进程中的关键事件。膜电容测量表明内源性PA的减少会损害具有融合能力的颗粒的形成。最后,我们表明通过外源提供一种有利于相对的双层膜转变为外小叶融合的半融合膜的脂质,可以挽救PLD1短干扰RNA介导的胞吐抑制作用。我们的研究结果表明,胞吐过程中需要PA合成来促进颗粒融合途径中的一个晚期事件。我们提出其潜在机制与PA改变膜曲率和促进半融合的能力有关。