Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France.
Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France.
Adv Biol Regul. 2022 Jan;83:100844. doi: 10.1016/j.jbior.2021.100844. Epub 2021 Nov 26.
Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their transport towards the cell periphery and their docking and fusion to the exocytic sites of the plasma membrane allowing release of vesicular content. Subsequent compensatory endocytosis of the protein and lipidic constituents of the vesicles maintains cell homeostasis. Despite the fact that lipids represent the majority of membrane constituents, little is known about their contribution to these processes. Using a combination of electrochemical measurement of single chromaffin cell catecholamine secretion and electron microscopy of roof-top membrane sheets associated with genetic, silencing and pharmacological approaches, we recently reported that diverse phosphatidic acid (PA) species regulates catecholamine release efficiency by controlling granule docking and fusion kinetics. The enzyme phospholipase D1 (PLD1), producing PA from phosphatidylcholine, seems to be the major responsible of these effects in this model. Here, we extended this work using spinning disk confocal microscopy showing that inhibition of PLD activity also reduced the velocity of granules undergoing a directed motion. Furthermore, a dopamine β-hydroxylase (DβH) internalization assay revealed that PA produced by PLD is required for an optimal recovery of vesicular membrane content by compensatory endocytosis. Thus, among numerous roles that have been attributed to PA our work gives core to the key regulatory role in secretion that has been proposed in different cell models. Few leads to explain these multiple functions of PA along the secretory pathway are discussed.
钙调控的胞吐作用是一个多步骤的过程,允许专门的分泌细胞释放信息分子,如神经递质、神经肽和激素,以进行细胞间通讯。从高尔基体潴泡中形成分泌小泡,然后将其运输到细胞外周,并将其停靠和融合到质膜的胞吐部位,从而释放小泡内容物。随后,小泡的蛋白质和脂质成分的补偿性内吞作用维持细胞的内稳态。尽管脂质占膜成分的大部分,但人们对它们在这些过程中的贡献知之甚少。我们最近使用电化学测量单个嗜铬细胞儿茶酚胺分泌和与遗传、沉默和药理学方法相关的屋顶膜片的电子显微镜,结合使用,报告了多种磷脂酸 (PA) 物种通过控制颗粒停靠和融合动力学来调节儿茶酚胺释放效率。产生 PA 的酶磷脂酶 D1 (PLD1) 似乎是该模型中这些效应的主要责任人。在这里,我们使用旋转盘共聚焦显微镜扩展了这项工作,结果表明抑制 PLD 活性也会降低正在进行定向运动的颗粒的速度。此外,多巴胺 β-羟化酶 (DβH) 内化测定表明,PLD 产生的 PA 对于通过补偿性内吞作用恢复囊泡膜内容物是必需的。因此,在 PA 被赋予的众多作用中,我们的工作为其在不同细胞模型中提出的分泌中的关键调节作用提供了核心。讨论了沿着分泌途径解释 PA 这些多种功能的一些线索。