Blagoev K B, Mihaila B, Travis B J, Alexandrov L B, Bishop A R, Ranken D, Posse S, Gasparovic C, Mayer A, Aine C J, Ulbert I, Morita M, Müller W, Connor J, Halgren E
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA.
Neuroimage. 2007 Aug 1;37(1):137-48. doi: 10.1016/j.neuroimage.2007.04.033. Epub 2007 May 4.
Neuronal communication in the brain involves electrochemical currents, which produce magnetic fields. Stimulus-evoked brain responses lead to changes in these fields and can be studied using magneto- and electro-encephalography (MEG/EEG). In this paper we model the spatiotemporal distribution of the magnetic field of a physiologically idealized but anatomically realistic neuron to assess the possibility of using magnetic resonance imaging (MRI) for directly mapping the neuronal currents in the human brain. Our results show that the magnetic field several centimeters from the centre of the neuron is well approximated by a dipole source, but the field close to the neuron is not, a finding particularly important for understanding the possible contrast mechanism underlying the use of MRI to detect and locate these currents. We discuss the importance of the spatiotemporal characteristics of the magnetic field in cortical tissue for evaluating and optimizing an experiment based on this mechanism and establish an upper bound for the expected MRI signal change due to stimulus-induced cortical response. Our simulations show that the expected change of the signal magnitude is 1.6% and its phase shift is 1 degrees . An unexpected finding of this work is that the cortical orientation with respect to the external magnetic field has little effect on the predicted MRI contrast. This encouraging result shows that magnetic resonance contrast directly based on the neuronal currents present in the cortex is theoretically a feasible imaging technique. MRI contrast generation based on neuronal currents depends on the dendritic architecture and we obtained high-resolution optical images of cortical tissue to discuss the spatial structure of the magnetic field in grey matter.
大脑中的神经元通信涉及电化学电流,而电化学电流会产生磁场。刺激诱发的大脑反应会导致这些磁场发生变化,这种变化可以通过磁脑电图(MEG/EEG)进行研究。在本文中,我们对一个生理理想化但解剖结构逼真的神经元的磁场时空分布进行建模,以评估使用磁共振成像(MRI)直接绘制人类大脑中神经元电流的可能性。我们的结果表明,距离神经元中心几厘米处的磁场可以很好地用偶极子源来近似,但靠近神经元处的磁场则不然,这一发现对于理解MRI用于检测和定位这些电流的潜在对比机制尤为重要。我们讨论了皮质组织中磁场的时空特征对于基于此机制评估和优化实验的重要性,并确定了由刺激诱发的皮质反应导致的预期MRI信号变化的上限。我们的模拟结果表明,信号幅度的预期变化为1.6%,其相移为1度。这项工作的一个意外发现是,皮质相对于外部磁场的方向对预测的MRI对比度影响很小。这一令人鼓舞的结果表明,基于皮质中存在的神经元电流的磁共振对比度在理论上是一种可行的成像技术。基于神经元电流的MRI对比度生成取决于树突结构,我们获得了皮质组织的高分辨率光学图像,以讨论灰质中磁场的空间结构。