Suppr超能文献

边界元快速多极子方法增强神经生理记录建模。

Boundary Element Fast Multipole Method for Enhanced Modeling of Neurophysiological Recordings.

出版信息

IEEE Trans Biomed Eng. 2021 Jan;68(1):308-318. doi: 10.1109/TBME.2020.2999271. Epub 2020 Dec 21.

Abstract

OBJECTIVE

A new numerical modeling approach is proposed which provides forward-problem solutions for both noninvasive recordings (EEG/MEG) and higher-resolution intracranial recordings (iEEG).

METHODS

The algorithm is our recently developed boundary element fast multipole method or BEM-FMM. It is based on the integration of the boundary element formulation in terms of surface charge density and the fast multipole method originating from its inventors. The algorithm still possesses the major advantage of the conventional BEM - high speed - but is simultaneously capable of processing a very large number of surface-based unknowns. As a result, an unprecedented spatial resolution could be achieved, which enables multiscale modeling.

RESULTS

For non-invasive EEG/MEG, we are able to accurately solve the forward problem with approximately 1 mm anatomical resolution in the cortex within 1-2 min given several thousand cortical dipoles. Targeting high-resolution iEEG, we are able to compute, for the first time, an integrated electromagnetic response for an ensemble (2,450) of tightly packed realistic pyramidal neocortical neurons in a full-head model with 0.6 mm anatomical cortical resolution. The neuronal arbor is comprised of 5.9 M elementary 1.2 μm long dipoles. On a standard server, the computations require about 5 min.

CONCLUSION

Our results indicate that the BEM-FMM approach may be well suited to support numerical multiscale modeling pertinent to modern high-resolution and submillimeter iEEG.

SIGNIFICANCE

Based on the speed and ease of implementation, this new algorithm represents a method that will greatly facilitate simulations at multi-scale across a variety of applications.

摘要

目的

提出了一种新的数值建模方法,该方法可提供非侵入性记录(EEG / MEG)和更高分辨率的颅内记录(iEEG)的正问题解决方案。

方法

该算法是我们最近开发的边界元快速多极子方法或 BEM-FMM。它基于表面电荷密度的边界元公式和其发明者的快速多极子方法的集成。该算法仍然具有常规 BEM 的主要优势-高速-但同时能够处理大量的基于表面的未知数。因此,可以实现前所未有的空间分辨率,从而实现多尺度建模。

结果

对于非侵入性 EEG / MEG,我们能够以大约 1 毫米的皮层解剖分辨率准确地解决正向问题,在皮层中大约有几千个皮层偶极子。针对高分辨率 iEEG,我们能够首次计算出紧密排列的 2450 个真实的锥体细胞神经元集合在具有 0.6 毫米解剖皮层分辨率的全头模型中的集成电磁响应。神经元树突由 590 万个基本的 1.2μm 长偶极子组成。在标准服务器上,计算大约需要 5 分钟。

结论

我们的结果表明,BEM-FMM 方法可能非常适合支持与现代高分辨率和亚毫米 iEEG 相关的数值多尺度建模。

意义

基于速度和易于实现,这种新算法代表了一种方法,将极大地促进各种应用中多尺度的模拟。

相似文献

引用本文的文献

3
[Fontanel compensation for infant electroencephalography forward modeling method].[婴儿脑电图正向建模方法的囟门补偿]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Dec 25;41(6):1085-1094. doi: 10.7507/1001-5515.202307003.
8
Quasistatic approximation in neuromodulation.神经调节中的准静态近似。
J Neural Eng. 2024 Jul 24;21(4). doi: 10.1088/1741-2552/ad625e.

本文引用的文献

2
Sequential Neural Activity in Primary Motor Cortex during Sleep.原发性运动皮层在睡眠中的序列神经活动。
J Neurosci. 2019 May 8;39(19):3698-3712. doi: 10.1523/JNEUROSCI.1408-18.2019. Epub 2019 Mar 6.
6
Promises and limitations of human intracranial electroencephalography.人类颅内脑电图的前景与局限。
Nat Neurosci. 2018 Apr;21(4):474-483. doi: 10.1038/s41593-018-0108-2. Epub 2018 Mar 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验