Suppr超能文献

通过有限元分析量化的纳米制造感应器对神经元活动的增强磁转导。

Enhanced magnetic transduction of neuronal activity by nanofabricated inductors quantified via finite element analysis.

机构信息

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, United States of America.

Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, 53706, United States of America.

出版信息

J Neural Eng. 2022 Jul 1;19(4). doi: 10.1088/1741-2552/ac7907.

Abstract

Methods for the detection of neural signals involve a compromise between invasiveness, spatiotemporal resolution, and the number of neurons or brain regions recorded. Electrode-based probes provide excellent response but usually require transcranial wiring and capture activity from limited neuronal populations. Noninvasive methods such as electroencephalography and magnetoencephalography offer fast readouts of field potentials or biomagnetic signals, respectively, but have spatial constraints that prohibit recording from single neurons. A cell-sized device that enhances neurogenic magnetic fields can be used as ansensor for magnetic-based modalities and increase the ability to detect diverse signals across multiple brain regions.We designed and modeled a device capable of forming a tight electromagnetic junction with single neurons, thereby transducing changes in cellular potential to magnetic field perturbations by driving current through a nanofabricated inductor element.We present detailed quantification of the device performance using realistic finite element simulations with signals and geometries acquired from patch-clamped neuronsand demonstrate the capability of the device to produce magnetic signals readable via existing modalities. We compare the magnetic output of the device to intrinsic neuronal magnetic fields (NMFs) and show that the transduced magnetic field intensity from a single neuron is more than three-fold higher at its peak (1.62 nT vs 0.51 nT). Importantly, we report on a large spatial enhancement of the transduced magnetic field output within a typical voxel (40 × 40 × 10m) over 250 times higher than the intrinsic NMF strength (0.64 nT vs 2.5 pT). We use this framework to perform optimizations of device performance based on nanofabrication constraints and material choices.Our quantifications institute a foundation for synthesizing and applying electromagnetic sensors for detecting brain activity and can serve as a general method for quantifying recording devices at the single cell level.

摘要

方法的检测神经信号涉及之间的折衷的侵略性,时空分辨率,和数量的神经元或大脑记录的地区。基于电极的探头提供了极好的反应,但通常需要经颅布线和捕获活动从有限的神经元群体。非侵入性的方法,如脑电图和脑磁图提供快速读数的场电位或生物磁信号,分别,但有空间限制,禁止从单一神经元的记录。一个细胞大小的设备,可以增强神经磁场可以作为传感器的磁模态,并增加能力来检测不同的信号在多个大脑区域。我们设计和建模一个设备能够形成一个紧密的电磁结与单个神经元,从而转导变化的细胞电位的磁场扰动通过驱动电流通过一个纳米制造感应器元素。我们提出了详细的量化的设备性能使用现实的有限元模拟与信号和几何形状获得从膜片钳神经元和演示设备的能力,产生可读的磁场信号通过现有的模式。我们比较的磁输出的设备到内在神经元的磁场(nmfs)和显示的转导磁场强度从一个单一的神经元是超过三倍以上在其峰值(1.62 毫特斯拉对 0.51 毫特斯拉)。重要的是,我们报告的一个大的空间增强的转导磁场输出在一个典型的体素(40 × 40 × 10 米)超过 250 倍高于内在 nmfs 强度(0.64 毫特斯拉对 2.5 皮特斯拉)。我们使用这个框架来执行优化的设备性能的基础上,纳米制造的限制和材料的选择。我们的量化研究所合成和应用电磁传感器检测脑活动的基础,并可以作为一种通用的方法来量化记录设备在单细胞水平。

相似文献

5
Modelling the magnetic signature of neuronal tissue.
Neuroimage. 2007 Aug 1;37(1):137-48. doi: 10.1016/j.neuroimage.2007.04.033. Epub 2007 May 4.
6
Representation of bioelectric current sources using Whitney elements in the finite element method.
Phys Med Biol. 2005 Jul 7;50(13):3023-39. doi: 10.1088/0031-9155/50/13/004. Epub 2005 Jun 8.
8
10
Biophysically detailed forward modeling of the neural origin of EEG and MEG signals.
Neuroimage. 2021 Jan 15;225:117467. doi: 10.1016/j.neuroimage.2020.117467. Epub 2020 Oct 17.

引用本文的文献

1
Self-Aligned Multilayered Nitrogen Vacancy Diamond Nanoparticles for High Spatial Resolution Magnetometry of Microelectronic Currents.
Nano Lett. 2025 Jun 11;25(23):9204-9213. doi: 10.1021/acs.nanolett.5c00656. Epub 2025 May 19.
2
Magnetic Detection of Neural Activity by Nanocoil Transducers.
Nano Lett. 2024 Oct 23;24(42):13147-13152. doi: 10.1021/acs.nanolett.4c02784. Epub 2024 Sep 25.
3
Nanofabricated high turn-density spiral coils for on-chip electromagneto-optical conversion.
Microsyst Nanoeng. 2024 Mar 25;10:44. doi: 10.1038/s41378-024-00674-9. eCollection 2024.
4
Inference of network connectivity from temporally binned spike trains.
J Neurosci Methods. 2024 Apr;404:110073. doi: 10.1016/j.jneumeth.2024.110073. Epub 2024 Feb 2.
5
Direct observation of NMR transverse relaxation in nanopatterned clusters of iron oxide particles.
Magn Reson Med. 2024 Feb;91(2):687-698. doi: 10.1002/mrm.29898. Epub 2023 Oct 23.
6
Wireless agents for brain recording and stimulation modalities.
Bioelectron Med. 2023 Sep 20;9(1):20. doi: 10.1186/s42234-023-00122-5.
7
Wireless Recording of Cortical Activity by an Ion-Sensitive Field Effect Transistor.
Sens Actuators B Chem. 2023 May 1;382. doi: 10.1016/j.snb.2023.133549. Epub 2023 Feb 21.
8
Wireless Recording of Cortical Activity by an Ion-Sensitive Field Effect Transistor.
bioRxiv. 2023 Jan 20:2023.01.19.524785. doi: 10.1101/2023.01.19.524785.

本文引用的文献

3
Local and global consequences of reward-evoked striatal dopamine release.
Nature. 2020 Apr;580(7802):239-244. doi: 10.1038/s41586-020-2158-3. Epub 2020 Apr 1.
4
Image-guided neural activity manipulation with a paramagnetic drug.
Nat Commun. 2020 Jan 9;11(1):136. doi: 10.1038/s41467-019-13933-5.
5
Frequency Modulated Parametric Oscillation for Antenna Powered Wireless Transmission of Voltage Sensing Signals.
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1783-1791. doi: 10.1109/TBCAS.2019.2951514. Epub 2019 Nov 5.
6
Next-generation interfaces for studying neural function.
Nat Biotechnol. 2019 Sep;37(9):1013-1023. doi: 10.1038/s41587-019-0198-8. Epub 2019 Aug 12.
7
Wireless resonant circuits for the minimally invasive sensing of biophysical processes in magnetic resonance imaging.
Nat Biomed Eng. 2019 Jan;3(1):69-78. doi: 10.1038/s41551-018-0309-8. Epub 2018 Oct 22.
8
Sensing intracellular calcium ions using a manganese-based MRI contrast agent.
Nat Commun. 2019 Feb 22;10(1):897. doi: 10.1038/s41467-019-08558-7.
10
Calcium-dependent molecular fMRI using a magnetic nanosensor.
Nat Nanotechnol. 2018 Jun;13(6):473-477. doi: 10.1038/s41565-018-0092-4. Epub 2018 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验