Suppr超能文献

金属离子可能会抑制或增强白色念珠菌和热带念珠菌生物膜中的细胞分化。

Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms.

作者信息

Harrison Joe J, Ceri Howard, Yerly Jerome, Rabiei Maryam, Hu Yaoping, Martinuzzi Robert, Turner Raymond J

机构信息

Department of Biological Sciences, University of Calgary, Calgary, Canada.

出版信息

Appl Environ Microbiol. 2007 Aug;73(15):4940-9. doi: 10.1128/AEM.02711-06. Epub 2007 Jun 8.

Abstract

Candida albicans and Candida tropicalis are polymorphic fungi that develop antimicrobial-resistant biofilm communities that are characterized by multiple cell morphotypes. This study investigated cell type interconversion and drug and metal resistance as well as community organization in biofilms of these microorganisms that were exposed to metal ions. To study this, Candida biofilms were grown either in microtiter plates containing gradient arrays of metal ions or in the Calgary Biofilm Device for high-throughput susceptibility testing. Biofilm formation and antifungal resistance were evaluated by viable cell counts, tetrazolium salt reduction, light microscopy, and confocal laser scanning microscopy in conjunction with three-dimensional visualization. We discovered that subinhibitory concentrations of certain metal ions (CrO(4)(2-), Co(2+), Cu(2+), Ag(+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), AsO(2)(-), and SeO(3)(2-)) caused changes in biofilm structure by blocking or eliciting the transition between yeast and hyphal cell types. Four distinct biofilm community structure types were discerned from these data, which were designated "domed," "layer cake," "flat," and "mycelial." This study suggests that Candida biofilm populations may respond to metal ions to form cell-cell and solid-surface-attached assemblages with distinct patterns of cellular differentiation.

摘要

白色念珠菌和热带念珠菌是多形真菌,它们会形成具有多种细胞形态型特征的抗微生物生物膜群落。本研究调查了这些暴露于金属离子的微生物生物膜中的细胞类型相互转化、药物和金属抗性以及群落组织。为了研究这一点,念珠菌生物膜在含有金属离子梯度阵列的微量滴定板中生长,或在用于高通量药敏试验的卡尔加里生物膜装置中生长。通过活细胞计数、四氮唑盐还原、光学显微镜以及结合三维可视化的共聚焦激光扫描显微镜来评估生物膜形成和抗真菌抗性。我们发现某些金属离子(CrO(4)(2-)、Co(2+)、Cu(2+)、Ag(+)、Zn(2+)、Cd(2+)、Hg(2+)、Pb(2+)、AsO(2)(-)和SeO(3)(2-))的亚抑菌浓度通过阻断或引发酵母和菌丝细胞类型之间的转变而导致生物膜结构发生变化。从这些数据中识别出四种不同的生物膜群落结构类型,分别命名为“圆顶状”、“层蛋糕状”、“扁平状”和“菌丝状”。本研究表明,念珠菌生物膜群体可能对金属离子作出反应,形成具有不同细胞分化模式的细胞 - 细胞和固体表面附着的组合。

相似文献

1
Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms.
Appl Environ Microbiol. 2007 Aug;73(15):4940-9. doi: 10.1128/AEM.02711-06. Epub 2007 Jun 8.
2
A subpopulation of Candida albicans and Candida tropicalis biofilm cells are highly tolerant to chelating agents.
FEMS Microbiol Lett. 2007 Jul;272(2):172-81. doi: 10.1111/j.1574-6968.2007.00745.x. Epub 2007 May 8.
3
Metal resistance in Candida biofilms.
FEMS Microbiol Ecol. 2006 Mar;55(3):479-91. doi: 10.1111/j.1574-6941.2005.00045.x.
4
In vitro effectiveness of anidulafungin against Candida sp. biofilms.
J Antibiot (Tokyo). 2013 Dec;66(12):701-4. doi: 10.1038/ja.2013.83. Epub 2013 Sep 11.
5
Dispersal of single and mixed non-albicans Candida species biofilms by β-1,3-glucanase in vitro.
Microb Pathog. 2017 Dec;113:342-347. doi: 10.1016/j.micpath.2017.10.057. Epub 2017 Nov 1.
7
Interactions between Terpinen-4-ol and Nystatin on biofilm of Candida albicans and Candida tropicalis.
Braz Dent J. 2018 Jul-Aug;29(4):359-367. doi: 10.1590/0103-6440201802073.
8
Synergistic activity of lysozyme and antifungal agents against Candida albicans biofilms on denture acrylic surfaces.
Arch Oral Biol. 2009 Feb;54(2):115-26. doi: 10.1016/j.archoralbio.2008.09.015. Epub 2008 Nov 26.
9
Induction of Candida albicans biofilm formation on silver-coated vascular grafts.
J Antimicrob Chemother. 2014 May;69(5):1282-5. doi: 10.1093/jac/dkt521. Epub 2014 Jan 20.
10
Biofilm development by blastospores and hyphae of Candida albicans on abraded denture acrylic resin surfaces.
J Prosthet Dent. 2014 Oct;112(4):988-93. doi: 10.1016/j.prosdent.2014.02.003. Epub 2014 Apr 14.

引用本文的文献

1
Influence of Zinc on Planktonic and Biofilm Cells.
J Fungi (Basel). 2024 May 20;10(5):361. doi: 10.3390/jof10050361.
3
A microtiter peg lid with ziggurat geometry for medium-throughput antibiotic testing and imaging of biofilms.
Biofilm. 2023 Nov 17;6:100167. doi: 10.1016/j.bioflm.2023.100167. eCollection 2023 Dec 15.
4
Biofilm Formation in Medically Important Species.
J Fungi (Basel). 2023 Sep 22;9(10):955. doi: 10.3390/jof9100955.
7
Pathogenesis and Clinical Relevance of Biofilms in Vulvovaginal Candidiasis.
Front Microbiol. 2020 Nov 11;11:544480. doi: 10.3389/fmicb.2020.544480. eCollection 2020.
8
Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces.
Sci Rep. 2020 Aug 10;10(1):13478. doi: 10.1038/s41598-020-70169-w.
10
Evaluation of Biofilm Formation in Using a Silicone-Based Platform with Synthetic Urine Medium.
Microorganisms. 2020 May 1;8(5):660. doi: 10.3390/microorganisms8050660.

本文引用的文献

2
Optimized candidal biofilm microtiter assay.
J Microbiol Methods. 2007 Feb;68(2):421-3. doi: 10.1016/j.mimet.2006.08.003. Epub 2006 Sep 26.
3
Candida albicans biofilms produce antifungal-tolerant persister cells.
Antimicrob Agents Chemother. 2006 Nov;50(11):3839-46. doi: 10.1128/AAC.00684-06. Epub 2006 Aug 21.
4
Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance.
J Med Microbiol. 2006 Aug;55(Pt 8):999-1008. doi: 10.1099/jmm.0.46569-0.
5
Quorum sensing in dimorphic fungi: farnesol and beyond.
Appl Environ Microbiol. 2006 Jun;72(6):3805-13. doi: 10.1128/AEM.02765-05.
6
CaMac1, a Candida albicans copper ion-sensing transcription factor, promotes filamentous and invasive growth in Saccharomyces cerevisiae.
Acta Biochim Biophys Sin (Shanghai). 2006 Mar;38(3):213-7. doi: 10.1111/j.1745-7270.2006.00146.x.
7
Metal resistance in Candida biofilms.
FEMS Microbiol Ecol. 2006 Mar;55(3):479-91. doi: 10.1111/j.1574-6941.2005.00045.x.
8
Yeasts from marine and estuarine waters with different levels of pollution in the state of rio de janeiro, Brazil.
Appl Environ Microbiol. 1981 Jan;41(1):173-8. doi: 10.1128/aem.41.1.173-178.1981.
9
Persister cells mediate tolerance to metal oxyanions in Escherichia coli.
Microbiology (Reading). 2005 Oct;151(Pt 10):3181-3195. doi: 10.1099/mic.0.27794-0.
10
High-throughput metal susceptibility testing of microbial biofilms.
BMC Microbiol. 2005 Oct 3;5:53. doi: 10.1186/1471-2180-5-53.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验