Wise Steven G, Yeo Giselle C, Hiob Matti A, Rnjak-Kovacina Jelena, Kaplan David L, Ng Martin K C, Weiss Anthony S
The Heart Research Institute, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia.
School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia.
Acta Biomater. 2014 Apr;10(4):1532-41. doi: 10.1016/j.actbio.2013.08.003. Epub 2013 Aug 11.
Elastin provides structural integrity, biological cues and persistent elasticity to a range of important tissues, including the vasculature and lungs. Its critical importance to normal physiology makes it a desirable component of biomaterials that seek to repair or replace these tissues. The recent availability of large quantities of the highly purified elastin monomer, tropoelastin, has allowed for a thorough characterization of the mechanical and biological mechanisms underpinning the benefits of mature elastin. While tropoelastin is a flexible molecule, a combination of optical and structural analyses has defined key regions of the molecule that directly contribute to the elastomeric properties and control the cell interactions of the protein. Insights into the structure and behavior of tropoelastin have translated into increasingly sophisticated elastin-like biomaterials, evolving from classically manufactured hydrogels and fibers to new forms, stabilized in the absence of incorporated cross-linkers. Tropoelastin is also compatible with synthetic and natural co-polymers, expanding the applications of its potential use beyond traditional elastin-rich tissues and facilitating finer control of biomaterial properties and the design of next-generation tailored bioactive materials.
弹性蛋白为包括脉管系统和肺在内的一系列重要组织提供结构完整性、生物信号和持久弹性。它对正常生理功能至关重要,这使其成为旨在修复或替换这些组织的生物材料的理想成分。最近大量高纯度弹性蛋白单体——原弹性蛋白的可得,使得对支撑成熟弹性蛋白益处的机械和生物学机制进行全面表征成为可能。虽然原弹性蛋白是一种柔性分子,但光学和结构分析相结合已确定了该分子的关键区域,这些区域直接促成弹性特性并控制蛋白质与细胞的相互作用。对原弹性蛋白结构和行为的深入了解已转化为越来越复杂的类弹性蛋白生物材料,从传统制造的水凝胶和纤维发展到新的形式,在不添加交联剂的情况下得以稳定。原弹性蛋白还与合成和天然共聚物兼容,将其潜在用途的应用范围扩展到传统富含弹性蛋白的组织之外,并有助于更精细地控制生物材料特性以及设计下一代定制生物活性材料。