Suppr超能文献

基于线性规划的通过图割进行近似标记

Approximate labeling via graph cuts based on linear programming.

作者信息

Komodakis Nikos, Tziritas Georgios

机构信息

Computer Science Department, University of Crete, Heraklion, Greece.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2007 Aug;29(8):1436-53. doi: 10.1109/TPAMI.2007.1061.

Abstract

A new framework is presented for both understanding and developing graph-cut-based combinatorial algorithms suitable for the approximate optimization of a very wide class of Markov Random Fields (MRFs) that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear programming in order to provide an alternative and more general view of state-of-the-art techniques like the \alpha-expansion algorithm, which is included merely as a special case. Moreover, contrary to \alpha-expansion, the derived algorithms generate solutions with guaranteed optimality properties for a much wider class of problems, for example, even for MRFs with nonmetric potentials. In addition, they are capable of providing per-instance suboptimality bounds in all occasions, including discrete MRFs with an arbitrary potential function. These bounds prove to be very tight in practice (that is, very close to 1), which means that the resulting solutions are almost optimal. Our algorithms' effectiveness is demonstrated by presenting experimental results on a variety of low-level vision tasks, such as stereo matching, image restoration, image completion, and optical flow estimation, as well as on synthetic problems.

摘要

本文提出了一个新的框架,用于理解和开发基于图割的组合算法,这些算法适用于对计算机视觉中经常遇到的非常广泛的一类马尔可夫随机场(MRF)进行近似优化。所提出的框架利用线性规划对偶理论中的工具,以便为诸如α扩展算法等当前技术提供一种替代的、更通用的视角,α扩展算法仅作为一个特例包含在内。此外,与α扩展不同,所推导的算法为更广泛的一类问题生成具有保证最优性的解,例如,即使对于具有非度量势的MRF也是如此。另外,它们能够在所有情况下提供每个实例的次优性边界,包括具有任意势函数的离散MRF。这些边界在实践中被证明非常紧密(即非常接近1),这意味着所得的解几乎是最优的。通过展示在各种低级视觉任务(如立体匹配、图像恢复、图像完成和光流估计)以及合成问题上的实验结果,证明了我们算法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验