Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Palo Alto, CA 94305, United States of America.
Phys Med Biol. 2017 Nov 10;62(23):8943-8958. doi: 10.1088/1361-6560/aa9262.
Automated segmentation of the portal vein (PV) for liver radiotherapy planning is a challenging task due to potentially low vasculature contrast, complex PV anatomy and image artifacts originated from fiducial markers and vasculature stents. In this paper, we propose a novel framework for automated segmentation of the PV from computed tomography (CT) images. We apply convolutional neural networks (CNNs) to learn the consistent appearance patterns of the PV using a training set of CT images with reference annotations and then enhance the PV in previously unseen CT images. Markov random fields (MRFs) were further used to smooth the results of the enhancement of the CNN enhancement and remove isolated mis-segmented regions. Finally, CNN-MRF-based enhancement was augmented with PV centerline detection that relied on PV anatomical properties such as tubularity and branch composition. The framework was validated on a clinical database with 72 CT images of patients scheduled for liver stereotactic body radiation therapy. The obtained accuracy of the segmentation was [Formula: see text] 0.83 and [Formula: see text] 1.08 mm in terms of the median Dice coefficient and mean symmetric surface distance, respectively, when segmentation is encompassed into the PV region of interest. The obtained results indicate that CNNs and anatomical analysis can be used for the accurate segmentation of the PV and potentially integrated into liver radiation therapy planning.
由于潜在的低血管对比度、复杂的 PV 解剖结构以及来自基准标记和血管支架的图像伪影,用于肝脏放射治疗计划的门静脉 (PV) 自动分割是一项具有挑战性的任务。在本文中,我们提出了一种从 CT 图像中自动分割 PV 的新框架。我们应用卷积神经网络 (CNNs) 使用具有参考注释的 CT 图像训练集来学习 PV 的一致外观模式,然后增强以前未见过的 CT 图像中的 PV。马尔可夫随机场 (MRFs) 进一步用于平滑 CNN 增强的结果并去除孤立的错误分割区域。最后,基于 CNN-MRF 的增强与基于 PV 解剖学特性(如管状和分支组成)的 PV 中心线检测相结合。该框架在一个临床数据库上进行了验证,该数据库包含 72 名计划接受肝脏立体定向体放射治疗的患者的 CT 图像。在将分割包含在感兴趣的 PV 区域内时,分割的准确性分别以中位数 Dice 系数和平均对称面距离表示为 [Formula: see text] 0.83 和 [Formula: see text] 1.08 mm。结果表明,CNN 和解剖分析可用于准确分割 PV,并可能集成到肝脏放射治疗计划中。