Suppr超能文献

将深度学习与解剖分析相结合,用于分割肝脏 SBRT 计划的门静脉。

Combining deep learning with anatomical analysis for segmentation of the portal vein for liver SBRT planning.

机构信息

Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Palo Alto, CA 94305, United States of America.

出版信息

Phys Med Biol. 2017 Nov 10;62(23):8943-8958. doi: 10.1088/1361-6560/aa9262.

Abstract

Automated segmentation of the portal vein (PV) for liver radiotherapy planning is a challenging task due to potentially low vasculature contrast, complex PV anatomy and image artifacts originated from fiducial markers and vasculature stents. In this paper, we propose a novel framework for automated segmentation of the PV from computed tomography (CT) images. We apply convolutional neural networks (CNNs) to learn the consistent appearance patterns of the PV using a training set of CT images with reference annotations and then enhance the PV in previously unseen CT images. Markov random fields (MRFs) were further used to smooth the results of the enhancement of the CNN enhancement and remove isolated mis-segmented regions. Finally, CNN-MRF-based enhancement was augmented with PV centerline detection that relied on PV anatomical properties such as tubularity and branch composition. The framework was validated on a clinical database with 72 CT images of patients scheduled for liver stereotactic body radiation therapy. The obtained accuracy of the segmentation was [Formula: see text] 0.83 and [Formula: see text] 1.08 mm in terms of the median Dice coefficient and mean symmetric surface distance, respectively, when segmentation is encompassed into the PV region of interest. The obtained results indicate that CNNs and anatomical analysis can be used for the accurate segmentation of the PV and potentially integrated into liver radiation therapy planning.

摘要

由于潜在的低血管对比度、复杂的 PV 解剖结构以及来自基准标记和血管支架的图像伪影,用于肝脏放射治疗计划的门静脉 (PV) 自动分割是一项具有挑战性的任务。在本文中,我们提出了一种从 CT 图像中自动分割 PV 的新框架。我们应用卷积神经网络 (CNNs) 使用具有参考注释的 CT 图像训练集来学习 PV 的一致外观模式,然后增强以前未见过的 CT 图像中的 PV。马尔可夫随机场 (MRFs) 进一步用于平滑 CNN 增强的结果并去除孤立的错误分割区域。最后,基于 CNN-MRF 的增强与基于 PV 解剖学特性(如管状和分支组成)的 PV 中心线检测相结合。该框架在一个临床数据库上进行了验证,该数据库包含 72 名计划接受肝脏立体定向体放射治疗的患者的 CT 图像。在将分割包含在感兴趣的 PV 区域内时,分割的准确性分别以中位数 Dice 系数和平均对称面距离表示为 [Formula: see text] 0.83 和 [Formula: see text] 1.08 mm。结果表明,CNN 和解剖分析可用于准确分割 PV,并可能集成到肝脏放射治疗计划中。

相似文献

引用本文的文献

3
Centerline-guided reinforcement learning model for pancreatic duct identifications.用于胰管识别的中心线引导强化学习模型
J Med Imaging (Bellingham). 2024 Nov;11(6):064002. doi: 10.1117/1.JMI.11.6.064002. Epub 2024 Nov 8.
6
Artificial intelligence techniques in liver cancer.肝癌中的人工智能技术
Front Oncol. 2024 Sep 3;14:1415859. doi: 10.3389/fonc.2024.1415859. eCollection 2024.
7
An overview of artificial intelligence in medical physics and radiation oncology.医学物理与放射肿瘤学中的人工智能概述。
J Natl Cancer Cent. 2023 Aug 11;3(3):211-221. doi: 10.1016/j.jncc.2023.08.002. eCollection 2023 Sep.

本文引用的文献

1
Segmentation of Pathological Structures by Landmark-Assisted Deformable Models.基于标志点辅助的可变形模型的病理结构分割。
IEEE Trans Med Imaging. 2017 Jul;36(7):1457-1469. doi: 10.1109/TMI.2017.2667578. Epub 2017 Feb 13.
3
Cancer Statistics, 2017.《2017 年癌症统计》
CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.
8
Automatic labeling of portal and hepatic veins from MR images prior to liver transplantation.肝移植前从磁共振图像自动标记门静脉和肝静脉。
Int J Comput Assist Radiol Surg. 2016 Dec;11(12):2153-2161. doi: 10.1007/s11548-016-1446-8. Epub 2016 Jun 23.
10
Liver vessel segmentation based on extreme learning machine.基于极限学习机的肝血管分割。
Phys Med. 2016 May;32(5):709-16. doi: 10.1016/j.ejmp.2016.04.003. Epub 2016 May 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验