Suppr超能文献

基于纹理的肺部多排CT中间质性肺炎模式的识别与特征分析

Texture-based identification and characterization of interstitial pneumonia patterns in lung multidetector CT.

作者信息

Korfiatis Panayiotis D, Karahaliou Anna N, Kazantzi Alexandra D, Kalogeropoulou Cristina, Costaridou Lena I

机构信息

Department of Medical Physics, School of Medicine, University of Patras, Patras 26500, Grecce.

出版信息

IEEE Trans Inf Technol Biomed. 2010 May;14(3):675-80. doi: 10.1109/TITB.2009.2036166. Epub 2009 Nov 10.

Abstract

Identification and characterization of diffuse parenchyma lung disease (DPLD) patterns challenges computer-aided schemes in computed tomography (CT) lung analysis. In this study, an automated scheme for volumetric quantification of interstitial pneumonia (IP) patterns, a subset of DPLD, is presented, utilizing a multidetector CT (MDCT) dataset. Initially, lung-field segmentation is achieved by 3-D automated gray-level thresholding combined with an edge-highlighting wavelet preprocessing step, followed by a texture-based border refinement step. The vessel tree volume is identified and removed from lung field, resulting in lung parenchyma (LP) volume. Following, identification and characterization of IP patterns is formulated as a three-class pattern classification of LP into normal, ground glass, and reticular patterns, by means of k-nearest neighbor voxel classification, exploiting 3-D cooccurrence features. Performance of the proposed scheme in indentifying and characterizing ground glass and reticular patterns was evaluated by means of volume overlap (ground glass: 0.734 +/- 0.057, reticular: 0.815 +/- 0.037), true-positive fraction (ground glass: 0.638 +/- 0.055, reticular: 0.942 +/- 0.023) and false-positive fraction (ground glass: 0.361 +/- 0.027, reticular: 0.147 +/- 0.032) on five MDCT scans.

摘要

在计算机断层扫描(CT)肺部分析中,识别和表征弥漫性实质性肺疾病(DPLD)模式对计算机辅助方案构成了挑战。在本研究中,提出了一种利用多探测器CT(MDCT)数据集对间质性肺炎(IP,DPLD的一个子集)模式进行体积定量的自动化方案。首先,通过三维自动灰度阈值分割结合边缘增强小波预处理步骤实现肺野分割,随后进行基于纹理的边界细化步骤。识别并从肺野中去除血管树体积,得到肺实质(LP)体积。接着,通过k近邻体素分类方法,利用三维共生特征,将LP的IP模式识别和表征为正常、磨玻璃和网状模式的三类模式分类。通过在五次MDCT扫描上的体积重叠率(磨玻璃:0.734±0.057,网状:0.815±0.037)、真阳性率(磨玻璃:0.638±0.055,网状:0.942±0.023)和假阳性率(磨玻璃:0.361±0.027,网状:0.147±0.032)对所提出方案在识别和表征磨玻璃和网状模式方面的性能进行了评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验