Suppr超能文献

功能磁共振成像(fMRI)统计软件包及用于分析包含随机运动和刺激相关运动的图像的策略比较。

Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion.

作者信息

Morgan Victoria L, Dawant Benoit M, Li Yong, Pickens David R

机构信息

Vanderbilt University Institute for Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, USA.

出版信息

Comput Med Imaging Graph. 2007 Sep;31(6):436-46. doi: 10.1016/j.compmedimag.2007.04.002. Epub 2007 Jun 15.

Abstract

The objectives of this study were to use computer-generated phantoms containing real subject motion to: (1) compare the sensitivity of four commonly used fMRI software packages and (2) compare the sensitivity of three statistical analysis strategies with respect to motion correction. The results suggest that all four packages perform similarly in fMRI statistical analysis with SPM2 having slightly higher sensitivity. The most sensitive analysis technique was to perform motion correction and include the realignment parameters as regressors in the general linear model. This approach applies to all four packages examined and can be most beneficial when stimulus-correlated motion is present.

摘要

本研究的目的是使用包含真实受试者运动的计算机生成体模,以:(1)比较四种常用功能磁共振成像(fMRI)软件包的灵敏度,以及(2)比较三种统计分析策略在运动校正方面的灵敏度。结果表明,在fMRI统计分析中,所有四个软件包的表现相似,其中SPM2的灵敏度略高。最灵敏的分析技术是进行运动校正,并将重排参数作为一般线性模型中的回归变量。这种方法适用于所研究的所有四个软件包,并且在存在与刺激相关的运动时可能最为有益。

相似文献

1
Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion.
Comput Med Imaging Graph. 2007 Sep;31(6):436-46. doi: 10.1016/j.compmedimag.2007.04.002. Epub 2007 Jun 15.
2
Computer-generated fMRI phantoms with motion-distortion interaction.
Magn Reson Imaging. 2007 Dec;25(10):1376-84. doi: 10.1016/j.mri.2007.03.032. Epub 2007 Jun 21.
3
A combined SPM-ICA approach to fMRI.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:723-6. doi: 10.1109/IEMBS.2006.260420.
5
Reduction of motion-related artifacts in resting state fMRI using aCompCor.
Neuroimage. 2014 Aug 1;96:22-35. doi: 10.1016/j.neuroimage.2014.03.028. Epub 2014 Mar 18.
7
Validation of non-rigid registration between functional and anatomical magnetic resonance brain images.
IEEE Trans Biomed Eng. 2008 Feb;55(2 Pt 1):563-71. doi: 10.1109/TBME.2007.912641.
8
Modeling and inference of multisubject fMRI data.
IEEE Eng Med Biol Mag. 2006 Mar-Apr;25(2):42-51. doi: 10.1109/memb.2006.1607668.
9
Probabilistic framework for brain connectivity from functional MR images.
IEEE Trans Med Imaging. 2008 Jun;27(6):825-33. doi: 10.1109/TMI.2008.915672.
10
Simultaneous registration and activation detection for fMRI.
IEEE Trans Med Imaging. 2003 Nov;22(11):1427-35. doi: 10.1109/tmi.2003.819294.

引用本文的文献

1
Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA.
Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00057. Epub 2024 Jan 5.
2
Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA.
bioRxiv. 2023 Nov 1:2023.07.19.549746. doi: 10.1101/2023.07.19.549746.
4
Optimizing data processing to improve the reproducibility of single-subject functional magnetic resonance imaging.
Brain Behav. 2020 Jun;10(6):e01617. doi: 10.1002/brb3.1617. Epub 2020 Apr 19.
6
Animal Functional Magnetic Resonance Imaging: Trends and Path Toward Standardization.
Front Neuroinform. 2020 Jan 22;13:78. doi: 10.3389/fninf.2019.00078. eCollection 2019.
7
Improved motion correction of submillimetre 7T fMRI time series with Boundary-Based Registration (BBR).
Neuroimage. 2020 Apr 15;210:116542. doi: 10.1016/j.neuroimage.2020.116542. Epub 2020 Jan 18.
8
Neuroimaging of pain in animal models: a review of recent literature.
Pain Rep. 2019 Aug 7;4(4):e732. doi: 10.1097/PR9.0000000000000732. eCollection 2019 Jul-Aug.
9
Resting State fMRI: Going Through the Motions.
Front Neurosci. 2019 Aug 13;13:825. doi: 10.3389/fnins.2019.00825. eCollection 2019.
10
Challenges and techniques for presurgical brain mapping with functional MRI.
Neuroimage Clin. 2017 Dec 6;17:794-803. doi: 10.1016/j.nicl.2017.12.008. eCollection 2018.

本文引用的文献

1
Wavelet-based Rician noise removal for magnetic resonance imaging.
IEEE Trans Image Process. 1999;8(10):1408-19. doi: 10.1109/83.791966.
2
Automated correction of spin-history related motion artefacts in fMRI: simulated and phantom data.
IEEE Trans Biomed Eng. 2005 Aug;52(8):1450-60. doi: 10.1109/TBME.2005.851484.
3
Comparison of fMRI motion correction software tools.
Neuroimage. 2005 Nov 15;28(3):529-43. doi: 10.1016/j.neuroimage.2005.05.058. Epub 2005 Aug 15.
4
Development of computer-generated phantoms for FMRI software evaluation.
Magn Reson Imaging. 2005 Jun;23(5):653-63. doi: 10.1016/j.mri.2005.04.007.
5
Variability in fMRI: a re-examination of inter-session differences.
Hum Brain Mapp. 2005 Mar;24(3):248-57. doi: 10.1002/hbm.20080.
6
Experimental designs and processing strategies for fMRI studies involving overt verbal responses.
Neuroimage. 2004 Nov;23(3):1046-58. doi: 10.1016/j.neuroimage.2004.07.039.
7
Advances in functional and structural MR image analysis and implementation as FSL.
Neuroimage. 2004;23 Suppl 1:S208-19. doi: 10.1016/j.neuroimage.2004.07.051.
8
Comparing methods of analyzing fMRI statistical parametric maps.
Neuroimage. 2004 Jul;22(3):1203-13. doi: 10.1016/j.neuroimage.2004.03.030.
9
An evaluation of thresholding techniques in fMRI analysis.
Neuroimage. 2004 May;22(1):95-108. doi: 10.1016/j.neuroimage.2003.12.047.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验