Suppr超能文献

乙醇杆菌无法产生电流,这表明还原氧化铁的能力并不一定能赋予其向燃料电池阳极传递电子的能力。

Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes.

作者信息

Richter Hanno, Lanthier Martin, Nevin Kelly P, Lovley Derek R

机构信息

Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA.

出版信息

Appl Environ Microbiol. 2007 Aug;73(16):5347-53. doi: 10.1128/AEM.00804-07. Epub 2007 Jun 15.

Abstract

The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.

摘要

对乙醇杆菌氧化电子供体并将电子转移至微生物燃料电池阳极的能力进行了评估,因为与乙醇杆菌属密切相关的微生物通常大量存在于从水生沉积物中获取电力的微生物燃料电池阳极上。在含有能支持该生物体还原氧化铁的电子供体的微生物燃料电池中,乙醇杆菌无法产生电流。使用乙醇杆菌和硫还原地杆菌的共培养物以乙醇作为燃料产生了电流。乙醇的消耗与乙酸盐和氢气的短暂积累有关。单独的硫还原地杆菌无法代谢乙醇,这表明乙醇杆菌在燃料电池中生长是通过将乙醇转化为氢气和乙酸盐,然后硫还原地杆菌将其氧化并将电子转移至阳极。乙醇中高达83%的可用电子以电能和代谢中间产物乙酸盐的形式被回收。硫还原地杆菌消耗氢气对乙醇杆菌的乙醇代谢很重要。共聚焦显微镜和16S rRNA基因分析表明,在阳极表面生长的细胞中有一半是乙醇杆菌,但乙醇杆菌的浮游细胞数量也几乎相同。相比之下,硫还原地杆菌主要附着在阳极上。乙醇杆菌是首个被发现无法在微生物燃料电池中产生电流的氧化铁还原微生物,这首次表明向氧化铁和燃料电池阳极进行细胞外电子转移的机制可能不同。

相似文献

3
Fe(III) and S0 reduction by Pelobacter carbinolicus.
Appl Environ Microbiol. 1995 Jun;61(6):2132-8. doi: 10.1128/aem.61.6.2132-2138.1995.
6
Electricity production by Geobacter sulfurreducens attached to electrodes.
Appl Environ Microbiol. 2003 Mar;69(3):1548-55. doi: 10.1128/AEM.69.3.1548-1555.2003.
7
Degradation of acetaldehyde and its precursors by Pelobacter carbinolicus and P. acetylenicus.
PLoS One. 2014 Dec 23;9(12):e115902. doi: 10.1371/journal.pone.0115902. eCollection 2014.
8
c-Type cytochromes in Pelobacter carbinolicus.
Appl Environ Microbiol. 2006 Nov;72(11):6980-5. doi: 10.1128/AEM.01128-06. Epub 2006 Aug 25.
10
Transcriptomic and genetic analysis of direct interspecies electron transfer.
Appl Environ Microbiol. 2013 Apr;79(7):2397-404. doi: 10.1128/AEM.03837-12. Epub 2013 Feb 1.

引用本文的文献

1
Elucidating the development of cooperative anode-biofilm-structures.
Biofilm. 2024 Mar 25;7:100193. doi: 10.1016/j.bioflm.2024.100193. eCollection 2024 Jun.
3
Long-term enriched methanogenic communities from thermokarst lake sediments show species-specific responses to warming.
FEMS Microbes. 2020 Oct 24;1(1):xtaa008. doi: 10.1093/femsmc/xtaa008. eCollection 2020 Sep.
4
Visualizing and Isolating Iron-Reducing Microorganisms at the Single-Cell Level.
Appl Environ Microbiol. 2021 Jan 15;87(3). doi: 10.1128/AEM.02192-20.
5
CRISPR-Cas Systems and the Paradox of Self-Targeting Spacers.
Front Microbiol. 2020 Jan 22;10:3078. doi: 10.3389/fmicb.2019.03078. eCollection 2019.
8
Dominates the Inner Layers of a Stratified Biofilm on a Fluidized Anode During Brewery Wastewater Treatment.
Front Microbiol. 2018 Mar 6;9:378. doi: 10.3389/fmicb.2018.00378. eCollection 2018.
10
Anaerobic oxidation of methane coupled with extracellular electron transfer to electrodes.
Sci Rep. 2017 Jul 11;7(1):5099. doi: 10.1038/s41598-017-05180-9.

本文引用的文献

2
Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens.
Environ Microbiol. 2006 Oct;8(10):1805-15. doi: 10.1111/j.1462-2920.2006.01065.x.
3
Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells.
Appl Environ Microbiol. 2006 Nov;72(11):7345-8. doi: 10.1128/AEM.01444-06. Epub 2006 Aug 25.
4
c-Type cytochromes in Pelobacter carbinolicus.
Appl Environ Microbiol. 2006 Nov;72(11):6980-5. doi: 10.1128/AEM.01128-06. Epub 2006 Aug 25.
5
Bug juice: harvesting electricity with microorganisms.
Nat Rev Microbiol. 2006 Jul;4(7):497-508. doi: 10.1038/nrmicro1442.
6
Hydrogen and Formate Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese by Alteromonas putrefaciens.
Appl Environ Microbiol. 1989 Mar;55(3):700-6. doi: 10.1128/aem.55.3.700-706.1989.
7
Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.
Appl Environ Microbiol. 1988 Jun;54(6):1472-80. doi: 10.1128/aem.54.6.1472-1480.1988.
8
Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens.
Appl Environ Microbiol. 2005 Dec;71(12):8634-41. doi: 10.1128/AEM.71.12.8634-8641.2005.
10
Extracellular electron transfer via microbial nanowires.
Nature. 2005 Jun 23;435(7045):1098-101. doi: 10.1038/nature03661.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验