Suppr超能文献

人工神经网络在生物组织肿瘤特征估计中的应用。

Application of artificial neural networks for the estimation of tumour characteristics in biological tissues.

作者信息

Hosseini Seyed Mohsen, Amiri Mahmood, Najarian Siamak, Dargahi Javad

机构信息

Biomechanics Department, Laboratory of Artificial Tactile Sensing and Robotic Surgery, Faculty of Biomedical Engineering, Amirkabir University of Technology, Hafez Avenue, Tehran, Iran.

出版信息

Int J Med Robot. 2007 Sep;3(3):235-44. doi: 10.1002/rcs.138.

Abstract

BACKGROUND

Artificial tactile sensing is a method in which the existence of tumours in biological tissues can be detected and computerized inverse analyses used to produce 'forward results'.

METHODS

Three feed-forward neural networks (FFNN) have been developed for the estimation of tumour characteristics. Each network provides one of the three parameters of the tumour, i.e. diameter, depth and tumour:tissue stiffness ratio. A resilient back-propagation (RP) algorithm with a leave-one-out (LOO) cross-validation approach is used for training purposes.

RESULTS

The proposed inverse approach based on neural networks is a reliable and efficient tool for diagnostic tests in order to accurately estimate the basic parameters of the tumour in the tissue.

CONCLUSION

There is a non-linear correlation between the tumour characteristics and their effects on the extracted features. In general, reliable estimation of tumour stiffness is obtained when the depth of tumour is small.

摘要

背景

人工触觉传感是一种可检测生物组织中肿瘤的存在并利用计算机化逆分析得出“正向结果”的方法。

方法

已开发出三个前馈神经网络(FFNN)用于估计肿瘤特征。每个网络提供肿瘤的三个参数之一,即直径、深度和肿瘤与组织的硬度比。采用带留一法(LOO)交叉验证方法的弹性反向传播(RP)算法进行训练。

结果

所提出的基于神经网络的逆方法是用于诊断测试的可靠且高效的工具,以便准确估计组织中肿瘤的基本参数。

结论

肿瘤特征与其对提取特征的影响之间存在非线性相关性。一般来说,当肿瘤深度较小时,可获得对肿瘤硬度的可靠估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验