Lloyd Alun L, Zhang Ji, Root A Morgan
Biomathematics Graduate Program, North Carolina State University, Raleigh, NC 27695, USA.
J R Soc Interface. 2007 Oct 22;4(16):851-63. doi: 10.1098/rsif.2007.1064.
Demographic stochasticity and heterogeneity in transmission of infection can affect the dynamics of host-vector disease systems in important ways. We discuss the use of analytic techniques to assess the impact of demographic stochasticity in both well-mixed and heterogeneous settings. Disease invasion probabilities can be calculated using branching process methodology. We review the use of this theory for host-vector infections and examine its use in the face of heterogeneous transmission. Situations in which there is a marked asymmetry in transmission between host and vector are seen to be of particular interest. For endemic infections, stochasticity leads to variation in prevalence about the endemic level. If these fluctuations are large enough, disease extinction can occur via endemic fade-out. We develop moment equations that quantify the impact of stochasticity, providing insight into the likelihood of stochastic extinction. We frame our discussion in terms of the simple Ross malaria model, but discuss extensions to more realistic host-vector models.
人口统计学随机性以及感染传播中的异质性能够以重要方式影响宿主 - 媒介疾病系统的动态变化。我们讨论在均匀混合和异质环境中使用分析技术来评估人口统计学随机性的影响。疾病入侵概率可以使用分支过程方法来计算。我们回顾该理论在宿主 - 媒介感染中的应用,并研究其在异质传播情况下的使用。宿主与媒介之间传播存在显著不对称的情况尤其值得关注。对于地方性感染,随机性导致患病率围绕地方病水平发生变化。如果这些波动足够大,疾病可能会通过地方病消退而灭绝。我们推导了量化随机性影响的矩方程,从而深入了解随机灭绝的可能性。我们以简单的罗斯疟疾模型为框架进行讨论,但也讨论了对更现实的宿主 - 媒介模型的扩展。