Suppr超能文献

糖尿病相关的细胞应激与功能障碍:线粒体及非线粒体活性氧生成与活性的作用

Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity.

作者信息

Newsholme P, Haber E P, Hirabara S M, Rebelato E L O, Procopio J, Morgan D, Oliveira-Emilio H C, Carpinelli A R, Curi R

机构信息

School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.

出版信息

J Physiol. 2007 Aug 15;583(Pt 1):9-24. doi: 10.1113/jphysiol.2007.135871. Epub 2007 Jun 21.

Abstract

It is now widely accepted, given the current weight of experimental evidence, that reactive oxygen species (ROS) contribute to cell and tissue dysfunction and damage caused by glucolipotoxicity in diabetes. The source of ROS in the insulin secreting pancreatic beta-cells and in the cells which are targets for insulin action has been considered to be the mitochondrial electron transport chain. While this source is undoubtably important, we provide additional information and evidence for NADPH oxidase-dependent generation of ROS both in pancreatic beta-cells and in insulin sensitive cells. While mitochondrial ROS generation may be important for regulation of mitochondrial uncoupling protein (UCP) activity and thus disruption of cellular energy metabolism, the NADPH oxidase associated ROS may alter parameters of signal transduction, insulin secretion, insulin action and cell proliferation or cell death. Thus NADPH oxidase may be a useful target for intervention strategies based on reversing the negative impact of glucolipotoxicity in diabetes.

摘要

鉴于目前实验证据的分量,活性氧(ROS)导致糖尿病中糖脂毒性引起的细胞和组织功能障碍及损伤这一观点已被广泛接受。胰岛素分泌胰腺β细胞以及胰岛素作用靶点细胞中的ROS来源一直被认为是线粒体电子传递链。虽然这个来源无疑很重要,但我们提供了额外的信息和证据,证明胰腺β细胞和胰岛素敏感细胞中存在依赖烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶产生的ROS。虽然线粒体ROS的产生可能对调节线粒体解偶联蛋白(UCP)活性进而破坏细胞能量代谢很重要,但与NADPH氧化酶相关的ROS可能会改变信号转导、胰岛素分泌、胰岛素作用以及细胞增殖或细胞死亡的参数。因此,NADPH氧化酶可能是基于逆转糖尿病中糖脂毒性负面影响的干预策略的一个有用靶点。

相似文献

1
Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity.
J Physiol. 2007 Aug 15;583(Pt 1):9-24. doi: 10.1113/jphysiol.2007.135871. Epub 2007 Jun 21.
2
Phagocyte-like NADPH oxidase promotes cytokine-induced mitochondrial dysfunction in pancreatic β-cells: evidence for regulation by Rac1.
Am J Physiol Regul Integr Comp Physiol. 2011 Jan;300(1):R12-20. doi: 10.1152/ajpregu.00421.2010. Epub 2010 Oct 13.
4
Insights into the critical role of NADPH oxidase(s) in the normal and dysregulated pancreatic beta cell.
Diabetologia. 2009 Dec;52(12):2489-98. doi: 10.1007/s00125-009-1536-z. Epub 2009 Oct 7.
5
Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase.
Can J Physiol Pharmacol. 2010 Mar;88(3):241-8. doi: 10.1139/Y10-018.
7
Advanced glycation end-products induce injury to pancreatic beta cells through oxidative stress.
Diabetes Metab. 2012 Jun;38(3):250-7. doi: 10.1016/j.diabet.2012.01.003. Epub 2012 Mar 3.
8
Rac1-NADPH oxidase signaling promotes CD36 activation under glucotoxic conditions in pancreatic beta cells.
Redox Biol. 2017 Apr;11:126-134. doi: 10.1016/j.redox.2016.11.009. Epub 2016 Nov 23.
10
Oxidative reactive species in cell injury: Mechanisms in diabetes mellitus and therapeutic approaches.
Ann N Y Acad Sci. 2005 Dec;1066:136-51. doi: 10.1196/annals.1363.019.

引用本文的文献

2
A potential herbal component for the future treatment of fatty liver disease: Geniposide from gardenia.
Front Pharmacol. 2025 May 23;16:1610676. doi: 10.3389/fphar.2025.1610676. eCollection 2025.
3
Detection and Analysis of Reactive Oxygen Species (ROS): Buffer Components Are Not Bystanders.
Anal Chem. 2025 Jul 22;97(28):14931-14942. doi: 10.1021/acs.analchem.4c07070. Epub 2025 Jun 3.
4
The cell origin of reactive oxygen species and its implication for evolutionary trade-offs.
Open Biol. 2025 Apr;15(4):240312. doi: 10.1098/rsob.240312. Epub 2025 Apr 16.
5
Integrated analysis of transcriptional and metabolic responses to mitochondrial stress.
Cell Rep Methods. 2025 Apr 21;5(4):101027. doi: 10.1016/j.crmeth.2025.101027. Epub 2025 Apr 14.
7
Oxidative markers and SOD variant: predictors of autism severity and susceptibility.
Future Sci OA. 2025 Dec;11(1):2483628. doi: 10.1080/20565623.2025.2483628. Epub 2025 Mar 31.
8
Reactive oxygen species: Orchestrating the delicate dance of platelet life and death.
Redox Biol. 2025 Mar;80:103489. doi: 10.1016/j.redox.2025.103489. Epub 2025 Jan 3.
9
Environment benign synthesis of 5-acyl-4-hydroxypyridin-2(1)-one derivatives as antioxidant and -amylase inhibitors.
Future Med Chem. 2024 Dec;16(24):2637-2646. doi: 10.1080/17568919.2024.2432289. Epub 2024 Nov 28.
10
Vitamin K2 Ameliorates Diabetes-Associated Cognitive Decline by Reducing Oxidative Stress and Neuroinflammation.
J Neuroimmune Pharmacol. 2024 Oct 28;19(1):56. doi: 10.1007/s11481-024-10156-4.

本文引用的文献

1
NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation.
Biochem J. 2007 Aug 15;406(1):105-14. doi: 10.1042/BJ20061903.
2
Reactive oxygen species as a signal in glucose-stimulated insulin secretion.
Diabetes. 2007 Jul;56(7):1783-91. doi: 10.2337/db06-1601. Epub 2007 Mar 30.
6
The path to insulin resistance: paved with ceramides?
Cell Metab. 2007 Mar;5(3):161-3. doi: 10.1016/j.cmet.2007.02.005.
7
Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus.
Curr Neurovasc Res. 2007 Feb;4(1):63-71. doi: 10.2174/156720207779940653.
8
The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology.
Physiol Rev. 2007 Jan;87(1):245-313. doi: 10.1152/physrev.00044.2005.
10
Nitrosative stress and pathogenesis of insulin resistance.
Antioxid Redox Signal. 2007 Mar;9(3):319-29. doi: 10.1089/ars.2006.1464.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验