van Langevelde F, Vis R D
Department of Engineering, University of Warwick, Coventry, United Kingdom.
Anal Chem. 1991 Oct 15;63(20):2253-9. doi: 10.1021/ac00020a011.
At the Synchrotron Radiation Source (SRS), Daresbury, U.K., a synchrotron microprobe was constructed, in order to create an instrument capable of analyzing at the ppm or in favorite cases sub-ppm level with a lateral resolution of 10 x 15 microns2. In order to span a wide range of elements to be analyzed, a beam energy of 15 keV was chosen. Focusing and monochromation of the white beam was done in one single step with a high-precision ellipsoidally concave curved Si(111) crystal. Sufficient flux of X-rays in a narrow energy band is available in the spot to measure trace elements at the femtogram level. Measurements on standard materials, reference standard materials, and biological samples showed the lower relative minimum detection limits and higher sensitivity for the higher Z-elements obtainable with micro-SXRF (synchrotron X-ray fluorescence) as compared with microtechniques using ion accelerators. Moreover, the much lower energy deposited in the specimen represents a major argument to prefer X-rays to ions for the analysis of radiation-sensitive samples.
在英国达雷斯伯里的同步辐射源(SRS),建造了一台同步辐射微探针,以制造一种能够在百万分之一(ppm)甚至在理想情况下达到亚百万分之一水平进行分析的仪器,其横向分辨率为10×15微米²。为了涵盖广泛的待分析元素,选择了15 keV的束流能量。白色光束的聚焦和单色化通过高精度椭球形凹面弯曲Si(111)晶体在一步中完成。在光斑处可获得窄能带中足够的X射线通量,以测量飞克级别的痕量元素。对标准材料、参考标准材料和生物样品的测量表明,与使用离子加速器的微技术相比,微同步辐射X射线荧光(micro-SXRF)对较高Z元素可获得更低的相对最低检测限和更高的灵敏度。此外,在样品中沉积的能量低得多,这是在分析对辐射敏感的样品时更倾向于使用X射线而非离子的一个主要理由。