Larriba Yolanda, Rueda Cristina, Fernández Miguel A, Peddada Shyamal D
Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Alexander Dr., RTP, NC 27709, USA
Nucleic Acids Res. 2016 Dec 15;44(22):e163. doi: 10.1093/nar/gkw771. Epub 2016 Sep 4.
Many biological processes, such as cell cycle, circadian clock, menstrual cycles, are governed by oscillatory systems consisting of numerous components that exhibit rhythmic patterns over time. It is not always easy to identify such rhythmic components. For example, it is a challenging problem to identify circadian genes in a given tissue using time-course gene expression data. There is a great potential for misclassifying non-rhythmic as rhythmic genes and vice versa. This has been a problem of considerable interest in recent years. In this article we develop a constrained inference based methodology called Order Restricted Inference for Oscillatory Systems (ORIOS) to detect rhythmic signals. Instead of using mathematical functions (e.g. sinusoidal) to describe shape of rhythmic signals, ORIOS uses mathematical inequalities. Consequently, it is robust and not limited by the biologist's choice of the mathematical model. We studied the performance of ORIOS using simulated as well as real data obtained from mouse liver, pituitary gland and data from NIH3T3, U2OS cell lines. Our results suggest that, for a broad collection of patterns of gene expression, ORIOS has substantially higher power to detect true rhythmic genes in comparison to some popular methods, while also declaring substantially fewer non-rhythmic genes as rhythmic.
A user friendly code implemented in R language can be downloaded from http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm CONTACT: peddada@niehs.nih.gov.
许多生物过程,如细胞周期、生物钟、月经周期等,都由振荡系统控制,这些系统由众多随时间呈现节律性模式的成分组成。识别这些节律性成分并非总是易事。例如,利用时间进程基因表达数据在给定组织中识别昼夜节律基因是一个具有挑战性的问题。将非节律性基因误分类为节律性基因以及反之的情况都很有可能发生。近年来,这一直是一个备受关注的问题。在本文中,我们开发了一种基于约束推理的方法,称为振荡系统的序贯受限推理(ORIOS)来检测节律信号。ORIOS不是使用数学函数(如正弦函数)来描述节律信号的形状,而是使用数学不等式。因此,它具有鲁棒性,不受生物学家对数学模型选择的限制。我们使用从小鼠肝脏、垂体获得的模拟数据以及真实数据,还有来自NIH3T3、U2OS细胞系的数据研究了ORIOS的性能。我们的结果表明,对于广泛的基因表达模式集合,与一些常用方法相比,ORIOS在检测真正的节律性基因方面具有显著更高的功效,同时将非节律性基因误判为节律性基因的情况也显著更少。
可以从http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm下载用R语言实现的用户友好型代码。