Suppr超能文献

胃癌正常组织与肿瘤组织差异的分子基础

Molecular basis of the differences between normal and tumor tissues of gastric cancer.

作者信息

Yang Sanghwa, Shin Jihye, Park Kyu Hyun, Jeung Hei-Cheul, Rha Sun Young, Noh Sung Hoon, Yang Woo Ick, Chung Hyun Cheol

机构信息

Cancer Metastasis Research Center, Yonsei University College of Medicine, 134, Shinchon-Dong, Seodaemun-Gu, Seoul 120-752, Korea.

出版信息

Biochim Biophys Acta. 2007 Sep;1772(9):1033-40. doi: 10.1016/j.bbadis.2007.05.005. Epub 2007 May 31.

Abstract

To be able to describe the differences between the normal and tumor tissues of gastric cancer at a molecular level would be essential in the study of the disease. We investigated the gene expression pattern in the two types of tissues from gastric cancer by performing expression profiling of 86 tissues on 17K complementary DNA microarrays. To select for the differentially expressed genes, class prediction algorithm was employed. For predictor selection, samples were first divided into a training (n=58), and a test set (n=28). A group of 894 genes was selected by a t-test in a training set, which was used for cross-validation in the training set and class (normal or tumor) prediction in the test set. Smaller groups of 894 genes were individually tested for their ability to correctly predict the normal or tumor samples based on gene expression pattern. The expression ratios of the 5 genes chosen from microarray data can be validated by real time RT-PCR over 6 tissue samples, resulting in a high level of correlation, individually or combined. When a representative predictor set of 92 genes was examined, pathways of 'focal adhesion' (with gene components of THBS2, PDGFD, MAPK1, COL1A2, COL6A3), 'ECM-receptor interaction' pathway (THBS2, COL1A2, COL6A3, FN1) and 'TGF-beta signaling' (THBS2, MAPK1, INHBA) represent some of the main differences between normal and tumor of gastric cancer at a molecular level.

摘要

在分子水平上描述胃癌正常组织与肿瘤组织之间的差异,对于该疾病的研究至关重要。我们通过在17K互补DNA微阵列上对86个组织进行表达谱分析,研究了胃癌两种组织类型中的基因表达模式。为了筛选差异表达基因,采用了分类预测算法。在预测器选择方面,样本首先被分为训练集(n = 58)和测试集(n = 28)。通过t检验在训练集中选择了一组894个基因,用于训练集的交叉验证和测试集的类别(正常或肿瘤)预测。对较小的894个基因组分别进行测试,以检验其基于基因表达模式正确预测正常或肿瘤样本的能力。从微阵列数据中选出的5个基因的表达比率,可通过实时RT-PCR在6个组织样本上得到验证,单独或组合起来都具有高度相关性。当检测一组有代表性的92个基因的预测器时,“粘着斑”(基因成分包括THBS2、PDGFD、MAPK1、COL1A2、COL6A3)、“细胞外基质-受体相互作用”途径(THBS2、COL1A2、COL6A3、FN1)和“TGF-β信号传导”(THBS2、MAPK1、INHBA)等途径代表了胃癌正常组织与肿瘤组织在分子水平上的一些主要差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验