Suppr超能文献

酶区室化的随机反应扩散模拟揭示了合成代谢途径催化效率的提高。

Stochastic reaction-diffusion simulation of enzyme compartmentalization reveals improved catalytic efficiency for a synthetic metabolic pathway.

作者信息

Conrado Robert J, Mansell Thomas J, Varner Jeffrey D, DeLisa Matthew P

机构信息

School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.

出版信息

Metab Eng. 2007 Jul;9(4):355-63. doi: 10.1016/j.ymben.2007.05.002. Epub 2007 May 26.

Abstract

We have demonstrated the accuracy of a spatial stochastic model of Escherichia coli central carbon metabolism using the next subvolume method (NSM), an efficient implementation of the Gillespie direct method of stochastic simulation. Using this model, we demonstrate that compartmentalization of the enzymes comprising an engineered pathway for biosynthesis of R-1,2-propanediol leads to improved kinetic properties for the pathway enzymes, especially when substrate diffusivities are low. Our results suggest that enzyme compartmentalization is a powerful approach for improving the catalytic turnover of a channeled carbon substrate and should be particularly useful when applied to synthetic metabolic pathways that suffer from poor translation efficiency, are present in highly variable copy numbers, and have low turnover for new substrates. Furthermore, this approach represents a generic modeling framework for simultaneously analyzing spatial and stochastic events in cellular metabolism and should enable quantitative evaluation of the effect of enzyme compartmentalization on virtually any recombinant pathway.

摘要

我们使用下一子体积法(NSM),即吉莱斯皮随机模拟直接法的一种有效实现方式,证明了大肠杆菌中心碳代谢空间随机模型的准确性。利用该模型,我们证明了组成R-1,2-丙二醇生物合成工程途径的酶的区室化可改善该途径酶的动力学特性,尤其是在底物扩散率较低时。我们的结果表明,酶区室化是提高通道化碳底物催化周转率的有力方法,当应用于翻译效率低、拷贝数高度可变且新底物周转率低的合成代谢途径时应特别有用。此外,这种方法代表了一个通用的建模框架,用于同时分析细胞代谢中的空间和随机事件,并且应该能够对酶区室化对几乎任何重组途径的影响进行定量评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验