Laboratory for Bioinformatics, Graduate School of Systems Biosciences, Kyushu University, 804 Westwing, Westwing, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
Laboratory for Bioinformatics, Graduate School of Systems Biosciences, Kyushu University, 804 Westwing, Westwing, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
Metab Eng. 2017 Jan;39:192-199. doi: 10.1016/j.ymben.2016.12.001. Epub 2016 Dec 18.
The introduction of a synthetic metabolic pathway consisting of multiple genes derived from various organisms enables cyanobacteria to directly produce valuable chemicals from carbon dioxide. We previously constructed a synthetic metabolic pathway composed of genes from Escherichia coli, Saccharomyces cerevisiae, and Klebsiella pneumoniae. This pathway enabled 1,3-propanediol (1,3-PDO) production from cellular DHAP via glycerol in the cyanobacterium, Synechococcus elongatus PCC 7942. The production of 1,3-PDO (3.79mM, 0.29g/l) directly from carbon dioxide by engineered S. elongatus PCC 7942 was successfully accomplished. However, the constructed strain accumulated a remarkable amount of glycerol (12.6mM, 1.16g/l), an intermediate metabolite in 1,3-PDO production. Notably, enhancement of latter reactions of synthetic metabolic pathway for conversion of glycerol to 1,3-PDO increases 1,3-PDO production. In this study, we aimed to increase the observed 1,3-PDO production titer. First, the weaker S. elongatus PCC 7942 promoter, PlacO1, was replaced with a stronger promoter (Ptrc) to regulate genes involved in the conversion of glycerol to 1,3-PDO. Second, the induction timing for gene expression and medium composition were optimized. Promoter replacement resulted in higher 1,3-PDO production than glycerol accumulation, and the amount of products (1,3-PDO and glycerol) generated via the synthetic metabolic pathway increased with optimization of medium composition. Accordingly, we achieved the highest titer of 1,3-PDO (16.1mM, 1.22g/l) and this was higher than glycerol accumulation (9.46mM, 0.87g/l). The improved titer was over 4-fold higher than that of our previous study.
引入由来自不同生物体的多个基因组成的合成代谢途径,使蓝藻能够直接将二氧化碳转化为有价值的化学品。我们之前构建了一个由大肠杆菌、酿酒酵母和肺炎克雷伯菌的基因组成的合成代谢途径。该途径使蓝藻 Synechococcus elongatus PCC 7942 能够通过甘油将细胞内的 DHAP 转化为 1,3-丙二醇(1,3-PDO)。通过工程化的 S. elongatus PCC 7942 直接从二氧化碳生产 1,3-PDO(3.79mM,0.29g/l)取得了成功。然而,构建的菌株积累了大量的甘油(12.6mM,1.16g/l),这是 1,3-PDO 生产中的一种中间代谢物。值得注意的是,增强合成代谢途径中甘油转化为 1,3-PDO 的后续反应可以提高 1,3-PDO 的产量。在这项研究中,我们旨在提高观察到的 1,3-PDO 产量。首先,用更强的启动子 Ptrc 替换较弱的 S. elongatus PCC 7942 启动子 PlacO1,以调节甘油转化为 1,3-PDO 的基因表达。其次,优化了基因表达的诱导时机和培养基组成。启动子替换导致 1,3-PDO 的产量高于甘油的积累,并且通过合成代谢途径生成的产物(1,3-PDO 和甘油)的量随着培养基组成的优化而增加。因此,我们实现了 1,3-PDO 的最高产量(16.1mM,1.22g/l),高于甘油的积累量(9.46mM,0.87g/l)。改进后的产量比我们之前的研究提高了 4 倍以上。