Suppr超能文献

蛋白质结合矿物质层在三维多孔聚合物支架上的均匀沉积。

Uniform deposition of protein incorporated mineral layer on three-dimensional porous polymer scaffolds.

作者信息

Segvich Sharon, Smith Hayes C, Luong Linh N, Kohn David H

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

J Biomed Mater Res B Appl Biomater. 2008 Feb;84(2):340-9. doi: 10.1002/jbm.b.30877.

Abstract

Inorganic-organic hybrid materials designed to facilitate bone tissue regeneration use a calcium phosphate mineral layer to encourage cell adhesion, proliferation, and osteogenic differentiation. Mineral formed on porous materials is often discontinuous through the thickness of the scaffold. This study aimed to uniformly coat the pores of three-dimensional (3D) porous, polymer scaffolds with a bone-like mineral layer in addition to uniformly incorporating a model protein within this mineral layer. A filtration system designed to induce simulated body fluid flow through the interstices of 3D polylactic-co-glycolic acid scaffolds (10-mm diameter x 2-mm thickness) illustrated that a uniform, continuous mineral layer can be precipitated on the pore surfaces of a 3D porous structure within 5 days. MicroCT analysis showed increased mineral volume percent (MV%) (7.86 +/- 3.25 MV%, p = 0.029) and continuous mineralization of filtered scaffolds compared with two static control groups (floating, 0.16 +/- 0.26 MV% and submerged, 0.20 +/- 0.01 MV%). Furthermore, the system was effective in coprecipitating a model protein, bone sialoprotein (BSA), within the mineral layer. A 10-fold increase in BSA incorporation was seen when coprecipitated filtered scaffolds (1308 +/- 464 microg) were compared to a submerged static control group (139 +/- 45 microg), p < 0.001. Confocal microscopy visually confirmed uniform coprecipitation of BSA throughout the thickness of the filtration scaffolds. The designed system enables 3D mineralization through the thickness of porous materials, and provides the option of including coprecipitated biomolecular cues within the mineral layer. This approach of providing a 3D conductive and osteoinductive environment could be conducive to bone tissue regeneration.

摘要

旨在促进骨组织再生的无机-有机杂化材料利用磷酸钙矿物层来促进细胞黏附、增殖和成骨分化。在多孔材料上形成的矿物通常在支架厚度方向上是不连续的。本研究旨在用类骨矿物层均匀地涂覆三维(3D)多孔聚合物支架的孔隙,同时在该矿物层中均匀地掺入一种模型蛋白。一个设计用于诱导模拟体液流过3D聚乳酸-乙醇酸共聚物支架(直径10毫米×厚度2毫米)孔隙的过滤系统表明,在5天内可以在3D多孔结构的孔隙表面沉淀出均匀、连续的矿物层。显微CT分析显示,与两个静态对照组(漂浮组,0.16±0.26体积百分比和浸没组,0.20±0.01体积百分比)相比,过滤后的支架矿物体积百分比(MV%)增加(7.86±3.25 MV%,p = 0.029)且矿化连续。此外,该系统能有效地在矿物层中共沉淀一种模型蛋白——骨唾液酸蛋白(BSA)。当将共沉淀过滤后的支架(1308±464微克)与浸没静态对照组(139±45微克)相比时,BSA掺入量增加了10倍,p < 0.001。共聚焦显微镜在视觉上证实了BSA在过滤支架整个厚度内均匀共沉淀。所设计的系统能够使多孔材料在整个厚度上实现3D矿化,并提供在矿物层中包含共沉淀生物分子线索的选择。这种提供3D传导性和骨诱导性环境的方法可能有利于骨组织再生。

相似文献

1
Uniform deposition of protein incorporated mineral layer on three-dimensional porous polymer scaffolds.
J Biomed Mater Res B Appl Biomater. 2008 Feb;84(2):340-9. doi: 10.1002/jbm.b.30877.
2
Spatial control of protein within biomimetically nucleated mineral.
Biomaterials. 2006 Mar;27(7):1175-86. doi: 10.1016/j.biomaterials.2005.07.043. Epub 2005 Aug 31.
4
Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro.
Tissue Eng. 2006 Oct;12(10):2997-3006. doi: 10.1089/ten.2006.12.2997.
5
Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro.
J Biomed Mater Res. 2000 Apr;50(1):50-8. doi: 10.1002/(sici)1097-4636(200004)50:1<50::aid-jbm8>3.0.co;2-f.
6
Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations.
J Mater Sci Mater Med. 2009 Sep;20(9):1909-15. doi: 10.1007/s10856-009-3756-7. Epub 2009 May 5.
9
Nano-ceramic composite scaffolds for bioreactor-based bone engineering.
Clin Orthop Relat Res. 2013 Aug;471(8):2422-33. doi: 10.1007/s11999-013-2859-0.

引用本文的文献

1
Dual-Functional Peptide DPI-VTK Promotes Mesenchymal Stem Cell Migration for Bone Regeneration.
J Biomed Mater Res A. 2025 Apr;113(4):e37908. doi: 10.1002/jbm.a.37908.
3
Cell and Material-Specific Phage Display Peptides Increase iPS-MSC Mediated Bone and Vasculature Formation In Vivo.
Adv Healthc Mater. 2019 May;8(9):e1801356. doi: 10.1002/adhm.201801356. Epub 2019 Mar 5.
4
Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration.
Tissue Eng Part B Rev. 2013 Aug;19(4):380-90. doi: 10.1089/ten.TEB.2012.0443. Epub 2013 Mar 1.
6
Using polymeric materials to control stem cell behavior for tissue regeneration.
Birth Defects Res C Embryo Today. 2012 Mar;96(1):63-81. doi: 10.1002/bdrc.21003.
7
Phosphorylation-dependent mineral-type specificity for apatite-binding peptide sequences.
Biomaterials. 2010 Dec;31(36):9422-30. doi: 10.1016/j.biomaterials.2010.08.064. Epub 2010 Oct 12.
8
9
Tissue engineering: state of the art in oral rehabilitation.
J Oral Rehabil. 2009 May;36(5):368-89. doi: 10.1111/j.1365-2842.2009.01939.x. Epub 2009 Feb 18.
10
The adsorption of preferential binding peptides to apatite-based materials.
Biomaterials. 2009 Mar;30(7):1287-98. doi: 10.1016/j.biomaterials.2008.11.008. Epub 2008 Dec 18.

本文引用的文献

1
Ceramic thin-film formation on functionalized interfaces through biomimetic processing.
Science. 1994 Apr 1;264(5155):48-55. doi: 10.1126/science.264.5155.48.
2
Role of tissue engineering in oral and maxillofacial reconstruction: findings of the 2005 AAOMS Research Summit.
J Oral Maxillofac Surg. 2005 Oct;63(10):1418-25. doi: 10.1016/j.joms.2005.07.004.
3
Spatial control of protein within biomimetically nucleated mineral.
Biomaterials. 2006 Mar;27(7):1175-86. doi: 10.1016/j.biomaterials.2005.07.043. Epub 2005 Aug 31.
4
Engineering craniofacial scaffolds.
Orthod Craniofac Res. 2005 Aug;8(3):162-73. doi: 10.1111/j.1601-6343.2005.00329.x.
5
Protein engineering approaches to biomaterials design.
Curr Opin Biotechnol. 2005 Aug;16(4):422-6. doi: 10.1016/j.copbio.2005.06.009.
6
Bio-adhesive surfaces to promote osteoblast differentiation and bone formation.
J Dent Res. 2005 May;84(5):407-13. doi: 10.1177/154405910508400502.
7
BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model.
Bone. 2005 May;36(5):745-57. doi: 10.1016/j.bone.2005.02.005. Epub 2005 Apr 7.
8
Formation of apatite on poly(alpha-hydroxy acid) in an accelerated biomimetic process.
J Biomed Mater Res B Appl Biomater. 2005 Apr;73(1):68-76. doi: 10.1002/jbm.b.30178.
10
3-D computational modeling of media flow through scaffolds in a perfusion bioreactor.
J Biomech. 2005 Mar;38(3):543-9. doi: 10.1016/j.jbiomech.2004.04.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验