Suppr超能文献

优先结合肽对磷灰石基材料的吸附作用。

The adsorption of preferential binding peptides to apatite-based materials.

作者信息

Segvich Sharon J, Smith Hayes C, Kohn David H

机构信息

Biomedical Engineering, University of Michigan, 2218 Dental Building, 1011 N University Avenue, Ann Arbor, MI 48109, USA.

出版信息

Biomaterials. 2009 Mar;30(7):1287-98. doi: 10.1016/j.biomaterials.2008.11.008. Epub 2008 Dec 18.

Abstract

The objective of this work was to identify peptide sequences with high affinity to bone-like mineral (BLM) to provide alternative design methods for functional bone regeneration peptides. Adsorption of preferential binding peptide sequences on four apatite-based substrates [BLM and three sintered apatite disks pressed from powders containing 0% CO(3)(2-) (HA), 5.6% CO(3)(2-) (CA5), 10.5% CO(3)(2-) (CA10)] with varied compositions and morphologies was investigated. A combination of phage display, ELISA, and computational modeling was used to elucidate three 12-mer peptide sequences APWHLSSQYSRT (A), STLPIPHEFSRE (S), and VTKHLNQISQSY (V), from 243 candidates with preferential adsorption on BLM and HA. Overall, peptides S and V have a significantly higher adsorption to the apatite-based materials in comparison to peptide A (for S vs. A, BLM p=0.001, CA5 p<0.001, CA10 p<0.001, HA p=0.038; for V vs. A, BLM p=0.006, CA5 p=0.033, CA10 p=0.029). FT-IR analysis displayed carbonate levels in CA5 and CA10 dropped to approximately 1.1-2.2% after sintering, whereas SEM imaging displayed CA5 and CA10 possess distinct morphologies. Adsorption results normalized to surface area indicate that small changes in carbonate percentage at a similar morphological scale did not provide enough carbonate incorporation to show statistical differences in peptide adsorption. Because the identified peptides (S and V) have preferential binding to apatite, their use can now be investigated in bone and dentin tissue engineering, tendon and ligament repair, and enamel formation.

摘要

这项工作的目的是鉴定与类骨矿物质(BLM)具有高亲和力的肽序列,为功能性骨再生肽提供替代设计方法。研究了四种具有不同组成和形态的磷灰石基底物[BLM和三种由含0% CO(3)(2-)(HA)、5.6% CO(3)(2-)(CA5)、10.5% CO(3)(2-)(CA10)的粉末压制而成的烧结磷灰石盘]上优先结合肽序列的吸附情况。采用噬菌体展示、酶联免疫吸附测定(ELISA)和计算建模相结合的方法,从243个在BLM和HA上具有优先吸附性的候选物中阐明了三个12聚体肽序列APWHLSSQYSRT(A)、STLPIPHEFSRE(S)和VTKHLNQISQSY(V)。总体而言,与肽A相比,肽S和V对磷灰石基材料的吸附显著更高(S与A相比,BLM p = 0.001,CA5 p < 0.001,CA10 p < 0.001,HA p = 0.038;V与A相比,BLM p = 0.006,CA5 p = 0.033,CA10 p = 0.029)。傅里叶变换红外光谱(FT-IR)分析显示,CA5和CA10中的碳酸盐含量在烧结后降至约1.1 - 2.2%,而扫描电子显微镜(SEM)成像显示CA5和CA10具有不同的形态。根据表面积归一化的吸附结果表明,在相似形态尺度下碳酸盐百分比的微小变化没有提供足够的碳酸盐掺入量以显示肽吸附的统计学差异。由于鉴定出的肽(S和V)对磷灰石具有优先结合性,现在可以在骨和牙本质组织工程、肌腱和韧带修复以及釉质形成中研究它们的用途。

相似文献

1
The adsorption of preferential binding peptides to apatite-based materials.
Biomaterials. 2009 Mar;30(7):1287-98. doi: 10.1016/j.biomaterials.2008.11.008. Epub 2008 Dec 18.
2
Identification of peptides with targeted adhesion to bone-like mineral via phage display and computational modeling.
Cells Tissues Organs. 2009;189(1-4):245-51. doi: 10.1159/000151380. Epub 2008 Aug 14.
3
Phosphorylation-dependent mineral-type specificity for apatite-binding peptide sequences.
Biomaterials. 2010 Dec;31(36):9422-30. doi: 10.1016/j.biomaterials.2010.08.064. Epub 2010 Oct 12.
4
Sintered carbonate apatites as bioresorbable bone substitutes.
J Biomed Mater Res. 1998 Mar 15;39(4):603-10. doi: 10.1002/(sici)1097-4636(19980315)39:4<603::aid-jbm15>3.0.co;2-7.
5
Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).
Biomaterials. 2004 Aug;25(18):4127-34. doi: 10.1016/j.biomaterials.2003.11.030.
6
Dual-functioning phage-derived peptides encourage human bone marrow cell-specific attachment to mineralized biomaterials.
Connect Tissue Res. 2014 Aug;55 Suppl 1(0 1):160-3. doi: 10.3109/03008207.2014.923868.
7
Inhibition of osteoblast mineralization by phosphorylated phage-derived apatite-specific peptide.
Biomaterials. 2015 Dec;73:120-30. doi: 10.1016/j.biomaterials.2015.09.021. Epub 2015 Sep 15.
8
Effects of a bone-like mineral film on phenotype of adult human mesenchymal stem cells in vitro.
Biomaterials. 2005 Jan;26(3):303-10. doi: 10.1016/j.biomaterials.2004.02.034.
9
Nucleation of biomimetic apatite in synthetic body fluids: dense and porous scaffold development.
Biomaterials. 2005 Jun;26(16):2835-45. doi: 10.1016/j.biomaterials.2004.08.010.
10
In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method.
Biomaterials. 2002 Jul;23(14):2909-15. doi: 10.1016/s0142-9612(01)00419-7.

引用本文的文献

2
Mineral-Binding Peptide Inhibits Ectopic Mineralization Secondary to Bone Morphogenetic Protein Stimulation.
J Biomed Mater Res B Appl Biomater. 2025 Jul;113(7):e35612. doi: 10.1002/jbm.b.35612.
3
Enhanced Drug Loading Capacity Using the Dual Metformine-Dexketoprofren Salt on Nanoapatite Materials.
Mol Pharm. 2025 Jun 2;22(6):3377-3387. doi: 10.1021/acs.molpharmaceut.5c00264. Epub 2025 Apr 24.
4
Order-Disorder Balance in Silk-Elastin-like Polypeptides Determines Their Self-Assembly into Hydrogel Networks.
ACS Appl Mater Interfaces. 2025 Jan 8;17(1):650-662. doi: 10.1021/acsami.4c17903. Epub 2024 Dec 16.
5
Engineering small-molecule and protein drugs for targeting bone tumors.
Mol Ther. 2024 May 1;32(5):1219-1237. doi: 10.1016/j.ymthe.2024.03.001. Epub 2024 Mar 6.
6
Biomedical applications of solid-binding peptides and proteins.
Mater Today Bio. 2023 Feb 15;19:100580. doi: 10.1016/j.mtbio.2023.100580. eCollection 2023 Apr.
7
Peptides in Dentistry: A Scoping Review.
Bioengineering (Basel). 2023 Feb 6;10(2):214. doi: 10.3390/bioengineering10020214.
8
The translational paradigm of nanobiomaterials: Biological chemistry to modern applications.
Mater Today Bio. 2022 Oct 17;17:100463. doi: 10.1016/j.mtbio.2022.100463. eCollection 2022 Dec 15.
9
Molecular simulations of the interfacial properties in silk-hydroxyapatite composites.
Nanoscale. 2022 Aug 4;14(30):10929-10939. doi: 10.1039/d2nr01989b.

本文引用的文献

1
Identification of peptides with targeted adhesion to bone-like mineral via phage display and computational modeling.
Cells Tissues Organs. 2009;189(1-4):245-51. doi: 10.1159/000151380. Epub 2008 Aug 14.
2
Uniform deposition of protein incorporated mineral layer on three-dimensional porous polymer scaffolds.
J Biomed Mater Res B Appl Biomater. 2008 Feb;84(2):340-9. doi: 10.1002/jbm.b.30877.
5
Molecular biomimetics: utilizing nature's molecular ways in practical engineering.
Acta Biomater. 2007 May;3(3):289-99. doi: 10.1016/j.actbio.2006.10.009. Epub 2007 Jan 25.
6
Role of tissue engineering in oral and maxillofacial reconstruction: findings of the 2005 AAOMS Research Summit.
J Oral Maxillofac Surg. 2005 Oct;63(10):1418-25. doi: 10.1016/j.joms.2005.07.004.
7
Spatial control of protein within biomimetically nucleated mineral.
Biomaterials. 2006 Mar;27(7):1175-86. doi: 10.1016/j.biomaterials.2005.07.043. Epub 2005 Aug 31.
8
Selecting peptides for use in nanoscale materials using phage-displayed combinatorial peptide libraries.
Curr Opin Biotechnol. 2005 Aug;16(4):470-5. doi: 10.1016/j.copbio.2005.07.001.
9
Elastin-derived peptides and TGF-beta1 induce osteogenic responses in smooth muscle cells.
Biochem Biophys Res Commun. 2005 Aug 26;334(2):524-32. doi: 10.1016/j.bbrc.2005.06.119.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验