Suppr超能文献

用于将D-葡萄糖转化为木糖醇及其他戊糖和糖醇的酿酒酵母代谢工程。

Metabolic engineering of Saccharomyces cerevisiae for conversion of D-glucose to xylitol and other five-carbon sugars and sugar alcohols.

作者信息

Toivari Mervi H, Ruohonen Laura, Miasnikov Andrei N, Richard Peter, Penttilä Merja

机构信息

VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.

出版信息

Appl Environ Microbiol. 2007 Sep;73(17):5471-6. doi: 10.1128/AEM.02707-06. Epub 2007 Jul 13.

Abstract

Recombinant Saccharomyces cerevisiae strains that produce the sugar alcohols xylitol and ribitol and the pentose sugar D-ribose from D-glucose in a single fermentation step are described. A transketolase-deficient S. cerevisiae strain accumulated D-xylulose 5-phosphate intracellularly and released ribitol and pentose sugars (D-ribose, D-ribulose, and D-xylulose) into the growth medium. Expression of the xylitol dehydrogenase-encoding gene XYL2 of Pichia stipitis in the transketolase-deficient strain resulted in an 8.5-fold enhancement of the total amount of the excreted sugar alcohols ribitol and xylitol. The additional introduction of the 2-deoxy-glucose 6-phosphate phosphatase-encoding gene DOG1 into the transketolase-deficient strain expressing the XYL2 gene resulted in a further 1.6-fold increase in ribitol production. Finally, deletion of the endogenous xylulokinase-encoding gene XKS1 was necessary to increase the amount of xylitol to 50% of the 5-carbon sugar alcohols excreted.

摘要

描述了在单一发酵步骤中从D-葡萄糖生产糖醇木糖醇和核糖醇以及戊糖D-核糖的重组酿酒酵母菌株。一种转酮醇酶缺陷型酿酒酵母菌株在细胞内积累5-磷酸D-木酮糖,并将核糖醇和戊糖(D-核糖、D-核糖酮和D-木酮糖)释放到生长培养基中。在转酮醇酶缺陷型菌株中表达树干毕赤酵母的木糖醇脱氢酶编码基因XYL2,导致分泌的糖醇核糖醇和木糖醇总量提高了8.5倍。将2-脱氧葡萄糖6-磷酸磷酸酶编码基因DOG1额外导入表达XYL2基因的转酮醇酶缺陷型菌株中,使核糖醇产量进一步提高了1.6倍。最后,删除内源性木酮糖激酶编码基因XKS1对于将木糖醇产量提高到分泌的5-碳糖醇的50%是必要的。

相似文献

1
Metabolic engineering of Saccharomyces cerevisiae for conversion of D-glucose to xylitol and other five-carbon sugars and sugar alcohols.
Appl Environ Microbiol. 2007 Sep;73(17):5471-6. doi: 10.1128/AEM.02707-06. Epub 2007 Jul 13.
2
Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol.
Appl Microbiol Biotechnol. 2010 Jan;85(3):731-9. doi: 10.1007/s00253-009-2184-4. Epub 2009 Aug 27.
5
Endogenous xylose pathway in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2004 Jun;70(6):3681-6. doi: 10.1128/AEM.70.6.3681-3686.2004.
10
Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response.
Appl Environ Microbiol. 2004 Nov;70(11):6816-25. doi: 10.1128/AEM.70.11.6816-6825.2004.

引用本文的文献

1
Metabolic engineering for sustainable xylitol production from diverse carbon sources in Pichia pastoris.
Microb Cell Fact. 2025 Mar 10;24(1):59. doi: 10.1186/s12934-025-02683-3.
3
Rewiring of Metabolic Network in During Adaptation to Different Stresses.
Front Microbiol. 2019 Oct 29;10:2417. doi: 10.3389/fmicb.2019.02417. eCollection 2019.
5
Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae.
Microb Cell Fact. 2011 Jun 21;10:45. doi: 10.1186/1475-2859-10-45.
6
Bridging the gap between fluxomics and industrial biotechnology.
J Biomed Biotechnol. 2010;2010:460717. doi: 10.1155/2010/460717. Epub 2011 Jan 2.
7
Progress in metabolic engineering of Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2008 Sep;72(3):379-412. doi: 10.1128/MMBR.00025-07.

本文引用的文献

1
Production of xylitol by metabolically engineered strains of Bacillus subtilis.
J Biotechnol. 2007 Jan 30;128(1):24-31. doi: 10.1016/j.jbiotec.2006.09.008. Epub 2006 Sep 23.
2
Production of D-arabitol by a metabolic engineered strain of Bacillus subtilis.
Biotechnol J. 2006 Feb;1(2):214-9. doi: 10.1002/biot.200500035.
3
Endogenous xylose pathway in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2004 Jun;70(6):3681-6. doi: 10.1128/AEM.70.6.3681-3686.2004.
4
ENZYMATIC BASIS FOR D-ARBITOL PRODUCTION BY SACCHAROMYCES ROUXII.
J Bacteriol. 1965 May;89(5):1186-94. doi: 10.1128/jb.89.5.1186-1194.1965.
5
Studies on the formation of D-arabitol by osmophilic yeasts.
Can J Biochem Physiol. 1962 Dec;40:1737-48.
6
Production of polyhydric alcohols by osmophilic yeasts.
Can J Microbiol. 1956 Apr;2(2):72-9. doi: 10.1139/m56-011.
9
Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from D-glucose.
Appl Biochem Biotechnol. 2002 Spring;98-100:577-89. doi: 10.1385/abab:98-100:1-9:577.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验