Kybic Jan
Center for Machine Perception, Czech Technical University, Prague, Czech Republic.
Inf Process Med Imaging. 2007;20:569-80. doi: 10.1007/978-3-540-73273-0_47.
We address the problem of entropy estimation for high-dimensional finite-accuracy data. Our main application is evaluating high-order mutual information image similarity criteria for multimodal image registration. The basis of our method is an estimator based on k-th nearest neighbor (NN) distances, modified so that only distances greater than some constant R are evaluated. This modification requires a correction which is found numerically in a preprocessing step using quadratic programming. We compare experimentally our new method with k-NN and histogram estimators on synthetic data as well as for evaluation of mutual information for image similarity.
我们研究了高维有限精度数据的熵估计问题。我们的主要应用是评估用于多模态图像配准的高阶互信息图像相似性准则。我们方法的基础是一种基于第k近邻(NN)距离的估计器,经过修改后只评估大于某个常数R的距离。这种修改需要一种校正,该校正通过在预处理步骤中使用二次规划进行数值计算得到。我们在合成数据上以及在图像相似性互信息评估方面,通过实验将我们的新方法与k近邻估计器和直方图估计器进行了比较。