Rivera Mariano, Ocegueda Omar, Marroquin Jose L
Department of Computer Science, Centro de Investigacion en Matematicas A.C., Guanajuato, Gto. 36000, Mexico.
IEEE Trans Image Process. 2007 Dec;16(12):3047-57. doi: 10.1109/tip.2007.909384.
We present a new Markov random field (MRF) based model for parametric image segmentation. Instead of directly computing a label map, our method computes the probability that the observed data at each pixel is generated by a particular intensity model. Prior information about segmentation smoothness and low entropy of the probability distribution maps is codified in the form of a MRF with quadratic potentials so that the optimal estimator is obtained by solving a quadratic cost function with linear constraints. Although, for segmentation purposes, the mode of the probability distribution at each pixel is naturally used as an optimal estimator, our method permits the use of other estimators, such as the mean or the median, which may be more appropriate for certain applications. Numerical experiments and comparisons with other published schemes are performed, using both synthetic images and real data of brain MRI for which expert hand-made segmentations are available. Finally, we show that the proposed methodology may be easily extended to other problems, such as stereo disparity estimation.
我们提出了一种基于马尔可夫随机场(MRF)的参数化图像分割新模型。我们的方法不是直接计算标签图,而是计算每个像素处的观测数据由特定强度模型生成的概率。关于分割平滑度和概率分布图低熵的先验信息以具有二次势的MRF形式进行编码,以便通过求解具有线性约束的二次成本函数来获得最优估计器。虽然就分割目的而言,每个像素处概率分布的众数自然被用作最优估计器,但我们的方法允许使用其他估计器,例如均值或中位数,这对于某些应用可能更合适。我们使用合成图像和有专家手工分割的脑MRI真实数据进行了数值实验,并与其他已发表的方案进行了比较。最后,我们表明所提出的方法可以很容易地扩展到其他问题,如立体视差估计。