Caban Kelvin, Kinzy Scott A, Copeland Paul R
Department of Molecular Genetics, Microbiology and Immunology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
Mol Cell Biol. 2007 Sep;27(18):6350-60. doi: 10.1128/MCB.00632-07. Epub 2007 Jul 16.
The decoding of specific UGA codons as selenocysteine is specified by the Sec insertion sequence (SECIS) element. Additionally, Sec-tRNA([Ser]Sec) and the dedicated Sec-specific elongation factor eEFSec are required but not sufficient for nonsense suppression. SECIS binding protein 2 (SBP2) is also essential for Sec incorporation, but its precise role is unknown. In addition to binding the SECIS element, SBP2 binds stably and quantitatively to ribosomes. To determine the function of the SBP2-ribosome interaction, conserved amino acids throughout the SBP2 L7Ae RNA binding motif were mutated to alanine in clusters of five. Mutant proteins were analyzed for ribosome binding, SECIS element binding, and Sec incorporation activity, allowing us to identify two distinct but interdependent sites within the L7Ae motif: (i) a core L7Ae motif required for SECIS binding and ribosome binding and (ii) an auxiliary motif involved in physical and functional interactions with the ribosome. Structural modeling of SBP2 based on the 15.5-kDa protein-U4 snRNA complex strongly supports a two-site model for L7Ae domain function within SBP2. These results provide evidence that the SBP2-ribosome interaction is essential for Sec incorporation.
特定UGA密码子解码为硒代半胱氨酸是由硒代半胱氨酸插入序列(SECIS)元件所指定的。此外,硒代半胱氨酰 - tRNA([Ser]Sec)和专门的硒代半胱氨酸特异性延伸因子eEFSec是无义抑制所必需的,但并不充分。SECIS结合蛋白2(SBP2)对于硒代半胱氨酸的掺入也至关重要,但其确切作用尚不清楚。除了结合SECIS元件外,SBP2还能稳定且定量地结合核糖体。为了确定SBP2 - 核糖体相互作用的功能,将SBP2 L7Ae RNA结合基序中保守的氨基酸以五个一组的方式突变为丙氨酸。对突变蛋白进行核糖体结合、SECIS元件结合和硒代半胱氨酸掺入活性分析,使我们能够在L7Ae基序中鉴定出两个不同但相互依赖的位点:(i)SECIS结合和核糖体结合所需的核心L7Ae基序,以及(ii)与核糖体进行物理和功能相互作用的辅助基序。基于15.5 kDa蛋白质 - U4 snRNA复合物对SBP2进行的结构建模有力地支持了SBP2中L7Ae结构域功能的双位点模型。这些结果提供了证据表明SBP2 - 核糖体相互作用对于硒代半胱氨酸的掺入至关重要。