Suppr超能文献

L7Ae RNA结合基序是Sec插入序列结合蛋白2的核糖体依赖性Sec掺入活性所必需的多功能结构域。

The L7Ae RNA binding motif is a multifunctional domain required for the ribosome-dependent Sec incorporation activity of Sec insertion sequence binding protein 2.

作者信息

Caban Kelvin, Kinzy Scott A, Copeland Paul R

机构信息

Department of Molecular Genetics, Microbiology and Immunology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.

出版信息

Mol Cell Biol. 2007 Sep;27(18):6350-60. doi: 10.1128/MCB.00632-07. Epub 2007 Jul 16.

Abstract

The decoding of specific UGA codons as selenocysteine is specified by the Sec insertion sequence (SECIS) element. Additionally, Sec-tRNA([Ser]Sec) and the dedicated Sec-specific elongation factor eEFSec are required but not sufficient for nonsense suppression. SECIS binding protein 2 (SBP2) is also essential for Sec incorporation, but its precise role is unknown. In addition to binding the SECIS element, SBP2 binds stably and quantitatively to ribosomes. To determine the function of the SBP2-ribosome interaction, conserved amino acids throughout the SBP2 L7Ae RNA binding motif were mutated to alanine in clusters of five. Mutant proteins were analyzed for ribosome binding, SECIS element binding, and Sec incorporation activity, allowing us to identify two distinct but interdependent sites within the L7Ae motif: (i) a core L7Ae motif required for SECIS binding and ribosome binding and (ii) an auxiliary motif involved in physical and functional interactions with the ribosome. Structural modeling of SBP2 based on the 15.5-kDa protein-U4 snRNA complex strongly supports a two-site model for L7Ae domain function within SBP2. These results provide evidence that the SBP2-ribosome interaction is essential for Sec incorporation.

摘要

特定UGA密码子解码为硒代半胱氨酸是由硒代半胱氨酸插入序列(SECIS)元件所指定的。此外,硒代半胱氨酰 - tRNA([Ser]Sec)和专门的硒代半胱氨酸特异性延伸因子eEFSec是无义抑制所必需的,但并不充分。SECIS结合蛋白2(SBP2)对于硒代半胱氨酸的掺入也至关重要,但其确切作用尚不清楚。除了结合SECIS元件外,SBP2还能稳定且定量地结合核糖体。为了确定SBP2 - 核糖体相互作用的功能,将SBP2 L7Ae RNA结合基序中保守的氨基酸以五个一组的方式突变为丙氨酸。对突变蛋白进行核糖体结合、SECIS元件结合和硒代半胱氨酸掺入活性分析,使我们能够在L7Ae基序中鉴定出两个不同但相互依赖的位点:(i)SECIS结合和核糖体结合所需的核心L7Ae基序,以及(ii)与核糖体进行物理和功能相互作用的辅助基序。基于15.5 kDa蛋白质 - U4 snRNA复合物对SBP2进行的结构建模有力地支持了SBP2中L7Ae结构域功能的双位点模型。这些结果提供了证据表明SBP2 - 核糖体相互作用对于硒代半胱氨酸的掺入至关重要。

相似文献

3
A novel protein domain induces high affinity selenocysteine insertion sequence binding and elongation factor recruitment.
J Biol Chem. 2008 Dec 12;283(50):35129-39. doi: 10.1074/jbc.M806008200. Epub 2008 Oct 23.
4
The selenocysteine-specific elongation factor contains a novel and multi-functional domain.
J Biol Chem. 2012 Nov 9;287(46):38936-45. doi: 10.1074/jbc.M112.415463. Epub 2012 Sep 19.
6
Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2.
RNA Biol. 2014;11(11):1402-13. doi: 10.1080/15476286.2014.996472.

引用本文的文献

2
Structure of the mammalian ribosome as it decodes the selenocysteine UGA codon.
Science. 2022 Jun 17;376(6599):1338-1343. doi: 10.1126/science.abg3875. Epub 2022 Jun 16.
3
The expression of essential selenoproteins during development requires SECIS-binding protein 2-like.
Life Sci Alliance. 2022 Feb 24;5(5). doi: 10.26508/lsa.202101291. Print 2022 May.
4
Ribosome Fate during Decoding of UGA-Sec Codons.
Int J Mol Sci. 2021 Dec 8;22(24):13204. doi: 10.3390/ijms222413204.
5
Mechanisms Affecting the Biosynthesis and Incorporation Rate of Selenocysteine.
Molecules. 2021 Nov 25;26(23):7120. doi: 10.3390/molecules26237120.
6
Human Genetic Disorders Resulting in Systemic Selenoprotein Deficiency.
Int J Mol Sci. 2021 Nov 29;22(23):12927. doi: 10.3390/ijms222312927.
7
Identification of a novel endogenous long non-coding RNA that inhibits selenoprotein P translation.
Nucleic Acids Res. 2021 Jul 9;49(12):6893-6907. doi: 10.1093/nar/gkab498.
8
Human Disorders Affecting the Selenocysteine Incorporation Pathway Cause Systemic Selenoprotein Deficiency.
Antioxid Redox Signal. 2020 Sep 1;33(7):481-497. doi: 10.1089/ars.2020.8097. Epub 2020 May 11.
9
Processive Recoding and Metazoan Evolution of Selenoprotein P: Up to 132 UGAs in Molluscs.
J Mol Biol. 2019 Nov 8;431(22):4381-4407. doi: 10.1016/j.jmb.2019.08.007. Epub 2019 Aug 20.
10
Ribosome profiling of selenoproteins reveals consequences of pathogenic missense mutations.
J Biol Chem. 2019 Sep 27;294(39):14185-14200. doi: 10.1074/jbc.RA119.009369. Epub 2019 Jul 26.

本文引用的文献

2
RNA kink-turns as molecular elbows: hydration, cation binding, and large-scale dynamics.
Structure. 2006 May;14(5):825-35. doi: 10.1016/j.str.2006.02.012.
3
Aminoglycosides decrease glutathione peroxidase-1 activity by interfering with selenocysteine incorporation.
J Biol Chem. 2006 Feb 10;281(6):3382-8. doi: 10.1074/jbc.M511295200. Epub 2005 Dec 14.
6
Localization and dynamic behavior of ribosomal protein L30e.
Nat Struct Mol Biol. 2005 May;12(5):467-8. doi: 10.1038/nsmb933. Epub 2005 May 1.
8
Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.
Nat Struct Mol Biol. 2005 May;12(5):408-16. doi: 10.1038/nsmb922. Epub 2005 Apr 10.
9
Ribosomal RNA kink-turn motif--a flexible molecular hinge.
J Biomol Struct Dyn. 2004 Oct;22(2):183-94. doi: 10.1080/07391102.2004.10506994.
10
Joint X-ray and NMR refinement of the yeast L30e-mRNA complex.
Structure. 2004 Jul;12(7):1165-76. doi: 10.1016/j.str.2004.04.023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验