Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
Science. 2022 Jun 17;376(6599):1338-1343. doi: 10.1126/science.abg3875. Epub 2022 Jun 16.
The elongation of eukaryotic selenoproteins relies on a poorly understood process of interpreting in-frame UGA stop codons as selenocysteine (Sec). We used cryo-electron microscopy to visualize Sec UGA recoding in mammals. A complex between the noncoding Sec-insertion sequence (SECIS), SECIS-binding protein 2 (SBP2), and 40 ribosomal subunit enables Sec-specific elongation factor eEFSec to deliver Sec. eEFSec and SBP2 do not interact directly but rather deploy their carboxyl-terminal domains to engage with the opposite ends of the SECIS. By using its Lys-rich and carboxyl-terminal segments, the ribosomal protein eS31 simultaneously interacts with Sec-specific transfer RNA (tRNA) and SBP2, which further stabilizes the assembly. eEFSec is indiscriminate toward l-serine and facilitates its misincorporation at Sec UGA codons. Our results support a fundamentally distinct mechanism of Sec UGA recoding in eukaryotes from that in bacteria.
真核生物硒蛋白的延长依赖于一个尚未被充分理解的过程,该过程将框架内的 UGA 终止密码子解释为硒代半胱氨酸(Sec)。我们使用冷冻电子显微镜观察了哺乳动物中 Sec UGA 重编码的过程。非编码 Sec 插入序列(SECIS)、SECIS 结合蛋白 2(SBP2)和 40 核糖体亚基之间的复合物使 Sec 特异性延伸因子 eEFSec 能够传递 Sec。eEFSec 和 SBP2 不会直接相互作用,而是利用它们的羧基末端结构域与 SECIS 的相反两端结合。通过利用其富含赖氨酸和羧基末端的片段,核糖体蛋白 eS31 同时与 Sec 特异性转移 RNA(tRNA)和 SBP2 相互作用,进一步稳定了复合物的形成。eEFSec 对 l-丝氨酸没有选择性,并促进其在 Sec UGA 密码子上的错误掺入。我们的结果支持真核生物与细菌中 Sec UGA 重编码的基本不同的机制。