Baars Tonie L, Petri Sebastian, Peters Christopher, Mayer Andreas
Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland.
Mol Biol Cell. 2007 Oct;18(10):3873-82. doi: 10.1091/mbc.e07-03-0205. Epub 2007 Jul 25.
Like numerous other eukaryotic organelles, the vacuole of the yeast Saccharomyces cerevisiae undergoes coordinated cycles of membrane fission and fusion in the course of the cell cycle and in adaptation to environmental conditions. Organelle fission and fusion processes must be balanced to ensure organelle integrity. Coordination of vacuole fission and fusion depends on the interactions of vacuolar SNARE proteins and the dynamin-like GTPase Vps1p. Here, we identify a novel factor that impinges on the fusion-fission equilibrium: the vacuolar H(+)-ATPase (V-ATPase) performs two distinct roles in vacuole fission and fusion. Fusion requires the physical presence of the membrane sector of the vacuolar H(+)-ATPase sector, but not its pump activity. Vacuole fission, in contrast, depends on proton translocation by the V-ATPase. Eliminating proton pumping by the V-ATPase either pharmacologically or by conditional or constitutive V-ATPase mutations blocked salt-induced vacuole fragmentation in vivo. In living cells, fission defects are epistatic to fusion defects. Therefore, mutants lacking the V-ATPase display large single vacuoles instead of multiple smaller vacuoles, the phenotype that is generally seen in mutants having defects only in vacuolar fusion. Its dual involvement in vacuole fission and fusion suggests the V-ATPase as a potential regulator of vacuolar morphology and membrane dynamics.
与许多其他真核细胞器一样,酿酒酵母的液泡在细胞周期过程中以及适应环境条件时会经历膜分裂和融合的协调循环。细胞器的分裂和融合过程必须保持平衡以确保细胞器的完整性。液泡分裂和融合的协调取决于液泡SNARE蛋白与动力蛋白样GTP酶Vps1p的相互作用。在此,我们鉴定出一种影响融合 - 分裂平衡的新因子:液泡H(+) - ATP酶(V - ATP酶)在液泡分裂和融合中发挥两种不同作用。融合需要液泡H(+) - ATP酶膜结构域的物理存在,但不需要其泵活性。相反,液泡分裂取决于V - ATP酶的质子转运。通过药理学方法或通过条件性或组成性V - ATP酶突变消除V - ATP酶的质子泵作用,可在体内阻断盐诱导的液泡碎片化。在活细胞中,分裂缺陷对于融合缺陷是上位性的。因此,缺乏V - ATP酶的突变体显示出大的单个液泡,而不是多个较小的液泡,这种表型通常在仅液泡融合有缺陷的突变体中出现。V - ATP酶在液泡分裂和融合中的双重作用表明它是液泡形态和膜动力学的潜在调节因子。