Suppr超能文献

利用车祸现场变量预测老年人对创伤中心护理的需求。

Using crash scene variables to predict the need for trauma center care in older persons.

作者信息

Scheetz Linda J, Zhang Juan, Kolassa John E

机构信息

College of Nursing, Rutgers, The State University of New Jersey, Newark, NJ, USA.

出版信息

Res Nurs Health. 2007 Aug;30(4):399-412. doi: 10.1002/nur.20203.

Abstract

Current trauma triage protocols lack sensitivity to occult injuries in older persons, resulting in unacceptable undertriage rates. We identified crash scene information that could be used by emergency personnel to identify the need for trauma center care in older persons injured in motor vehicle crashes. Crash records of 7,883 persons 65 years and older were explored using classification and regression trees (CART) analysis. CART analysis of 26 crash scene variables resulted in two classification trees from which triage decision rules were stated for persons with severe and moderate injuries. Sensitivity and specificity of the rules were 95.15% and 76.47% for severe injury and 83.1% and 81.5% for moderate injury.

摘要

当前的创伤分诊方案对老年人的隐匿性损伤缺乏敏感性,导致不可接受的分诊不足率。我们确定了急救人员可用于识别机动车碰撞事故中受伤老年人是否需要创伤中心治疗的事故现场信息。使用分类与回归树(CART)分析对7883名65岁及以上人员的碰撞事故记录进行了研究。对26个事故现场变量进行CART分析,得出了两棵分类树,从中为重伤和中度受伤人员制定了分诊决策规则。对于重伤,规则的敏感性和特异性分别为95.15%和76.47%;对于中度受伤,敏感性和特异性分别为83.1%和81.5%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验