Suppr超能文献

利用上位性信息检测关联。

Detecting association using epistatic information.

作者信息

Chapman Juliet, Clayton David

机构信息

London School of Hygiene and Tropical Medicine, London, United Kingdom.

出版信息

Genet Epidemiol. 2007 Dec;31(8):894-909. doi: 10.1002/gepi.20250.

Abstract

Genetic association studies have been less successful than expected in detecting causal genetic variants, with frequent non-replication when such variants are claimed. Numerous possible reasons have been postulated, including inadequate sample size and possible unobserved stratification. Another possibility, and the focus of this paper, is that of epistasis, or gene-gene interaction. Although unlikely that we may glean information about disease mechanism, based purely upon the data, it may be possible to increase our power to detect an effect by allowing for epistasis within our test statistic. This paper derives an appropriate "omnibus" test for detecting causal loci whist allowing for numerous possible interactions and compares the power of such a test with that of the usual main effects test. This approach differs from that commonly used, for example by Marchini et al. [2005], in that it tests simultaneously for main effects and interactions, rather than interactions alone. The alternative hypothesis being tested by the "omnibus" test is whether a particular locus of interest has an effect on disease status, either marginally or epistatically and is therefore directly comparable to the main effects test at that locus. The paper begins by considering the direct case, in which the putative causal variants are observed and then extends these ideas to the indirect case in which the causal variants are unobserved and we have a set of tag single nucleotide polymorphisms (tag SNPs) representing the regions of interest. In passing, the derivation of the indirect omnibus test statistic leads to a novel "indirect case-only test for interaction".

摘要

基因关联研究在检测因果基因变异方面的成果不如预期,当宣称发现此类变异时,经常出现无法重复验证的情况。人们提出了许多可能的原因,包括样本量不足以及可能存在未观察到的分层现象。另一种可能性,也是本文的重点,是上位性,即基因-基因相互作用。虽然仅基于数据我们不太可能收集到有关疾病机制的信息,但通过在检验统计量中考虑上位性,有可能提高我们检测效应的能力。本文推导了一种合适的“综合”检验方法,用于检测因果位点,同时考虑众多可能的相互作用,并将这种检验的效能与常用的主效应检验的效能进行比较。这种方法与例如Marchini等人[2005年]常用的方法不同,它同时检验主效应和相互作用,而不是只检验相互作用。“综合”检验所检验的备择假设是特定的感兴趣位点是否对疾病状态有影响,无论是边际效应还是上位性效应,因此与该位点的主效应检验直接可比。本文首先考虑直接情况,即观察到假定的因果变异,然后将这些想法扩展到间接情况,即未观察到因果变异,而我们有一组代表感兴趣区域的标签单核苷酸多态性(标签SNP)。顺便提一下,间接综合检验统计量的推导导致了一种新颖的“仅间接情况的相互作用检验”。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验