Suppr超能文献

应用于检测基因间相互作用的差异网络测试

Testing Differential Networks with Applications to Detecting Gene-by-Gene Interactions.

作者信息

Xia Yin, Cai Tianxi, Cai T Tony

机构信息

Department of Statistics & Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA.

Department of Biostatistics, Harvard School of Public Health, Harvard University, Boston, Massachusetts 02115, USA.

出版信息

Biometrika. 2015 Jun;102(2):247-266. doi: 10.1093/biomet/asu074. Epub 2015 Mar 2.

Abstract

Model organisms and human studies have led to increasing empirical evidence that interactions among genes contribute broadly to genetic variation of complex traits. In the presence of gene-by-gene interactions, the dimensionality of the feature space becomes extremely high relative to the sample size. This imposes a significant methodological challenge in identifying gene-by-gene interactions. In the present paper, through a Gaussian graphical model framework, we translate the problem of identifying gene-by-gene interactions associated with a binary trait into an inference problem on the difference of two high-dimensional precision matrices, which summarize the conditional dependence network structures of the genes. We propose a procedure for testing the differential network globally that is particularly powerful against sparse alternatives. In addition, a multiple testing procedure with false discovery rate control is developed to infer the specific structure of the differential network. Theoretical justification is provided to ensure the validity of the proposed tests and optimality results are derived under sparsity assumptions. A simulation study demonstrates that the proposed tests maintain the desired error rates under the null and have good power under the alternative. The methods are applied to a breast cancer gene expression study.

摘要

模式生物和人类研究已产生越来越多的经验证据,表明基因间的相互作用在很大程度上促成了复杂性状的遗传变异。在存在基因与基因相互作用的情况下,相对于样本量而言,特征空间的维度变得极高。这在识别基因与基因的相互作用方面带来了重大的方法学挑战。在本文中,通过高斯图形模型框架,我们将识别与二元性状相关的基因与基因相互作用的问题转化为关于两个高维精度矩阵差异的推断问题,这两个矩阵总结了基因的条件依赖网络结构。我们提出了一种用于全局检验差异网络的程序,该程序对稀疏替代方案特别有效。此外,还开发了一种具有错误发现率控制的多重检验程序,以推断差异网络的具体结构。提供了理论依据以确保所提出检验的有效性,并在稀疏性假设下得出最优结果。一项模拟研究表明,所提出的检验在原假设下保持了所需的错误率,在备择假设下具有良好的功效。这些方法被应用于一项乳腺癌基因表达研究。

相似文献

1
Testing Differential Networks with Applications to Detecting Gene-by-Gene Interactions.
Biometrika. 2015 Jun;102(2):247-266. doi: 10.1093/biomet/asu074. Epub 2015 Mar 2.
3
Multiple Testing of Submatrices of a Precision Matrix with Applications to Identification of Between Pathway Interactions.
J Am Stat Assoc. 2018;113(521):328-339. doi: 10.1080/01621459.2016.1251930. Epub 2017 Sep 26.
5
Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks.
Biostatistics. 2006 Apr;7(2):302-17. doi: 10.1093/biostatistics/kxj008. Epub 2005 Dec 2.
6
Differential Markov random field analysis with an application to detecting differential microbial community networks.
Biometrika. 2019 Jun;106(2):401-416. doi: 10.1093/biomet/asz012. Epub 2019 Apr 22.
7
An Integrated Approach of Learning Genetic Networks From Genome-Wide Gene Expression Data Using Gaussian Graphical Model and Monte Carlo Method.
Bioinform Biol Insights. 2023 Feb 27;17:11779322231152972. doi: 10.1177/11779322231152972. eCollection 2023.
8
Hypothesis testing of matrix graph model with application to brain connectivity analysis.
Biometrics. 2017 Sep;73(3):780-791. doi: 10.1111/biom.12633. Epub 2016 Dec 12.
9
Statistical completion of a partially identified graph with applications for the estimation of gene regulatory networks.
Biostatistics. 2015 Oct;16(4):670-85. doi: 10.1093/biostatistics/kxv013. Epub 2015 Apr 1.
10
Covariate-Adjusted Precision Matrix Estimation with an Application in Genetical Genomics.
Biometrika. 2013 Mar;100(1):139-156. doi: 10.1093/biomet/ass058. Epub 2012 Nov 30.

引用本文的文献

1
Connectivity Regression.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf002.
2
A framework for analyzing EEG data using high-dimensional tests.
Bioinformatics. 2025 Mar 29;41(4). doi: 10.1093/bioinformatics/btaf109.
3
Bayesian estimation of covariate assisted principal regression for brain functional connectivity.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae023.
4
A Bayesian approach to differential edges with probabilistic interactions: applications in association and classification.
Bioinform Adv. 2023 Nov 24;3(1):vbad172. doi: 10.1093/bioadv/vbad172. eCollection 2023.
5
NETWORK DIFFERENTIAL CONNECTIVITY ANALYSIS.
Ann Appl Stat. 2022 Dec;16(4):2166-2182. doi: 10.1214/21-aoas1581. Epub 2022 Sep 26.
6
Differential Network Analysis: A Statistical Perspective.
Wiley Interdiscip Rev Comput Stat. 2021 Mar-Apr;13(2). doi: 10.1002/wics.1508. Epub 2020 Apr 6.
7
RCFGL: Rapid Condition adaptive Fused Graphical Lasso and application to modeling brain region co-expression networks.
PLoS Comput Biol. 2023 Jan 6;19(1):e1010758. doi: 10.1371/journal.pcbi.1010758. eCollection 2023 Jan.
8
Bayesian Edge Regression in Undirected Graphical Models to Characterize Interpatient Heterogeneity in Cancer.
J Am Stat Assoc. 2022;117(538):533-546. doi: 10.1080/01621459.2021.2000866. Epub 2022 Jan 5.
9
Hypothesis Testing for Network Data with Power Enhancement.
Stat Sin. 2022;32:293-321. doi: 10.5705/ss.202019.0361.
10
ASYMPTOTICALLY INDEPENDENT U-STATISTICS IN HIGH-DIMENSIONAL TESTING.
Ann Stat. 2021 Feb;49(1):154-181. doi: 10.1214/20-aos1951. Epub 2021 Jan 29.

本文引用的文献

1
The joint graphical lasso for inverse covariance estimation across multiple classes.
J R Stat Soc Series B Stat Methodol. 2014 Mar;76(2):373-397. doi: 10.1111/rssb.12033.
2
Wnt/β-catenin and MAPK signaling: allies and enemies in different battlefields.
Sci Signal. 2012 Apr 10;5(219):pe15. doi: 10.1126/scisignal.2002921.
3
4
Discussion of "Sure Independence Screening for Ultra-High Dimensional Feature Space.
J R Stat Soc Series B Stat Methodol. 2008 Nov;70(5):903. doi: 10.1111/j.1467-9868.2008.00674.x.
6
Advances in breast cancer: pathways to personalized medicine.
Clin Cancer Res. 2008 Dec 15;14(24):7988-99. doi: 10.1158/1078-0432.CCR-08-1211.
8
Wnt signalling and its impact on development and cancer.
Nat Rev Cancer. 2008 May;8(5):387-98. doi: 10.1038/nrc2389.
9
Polymorphism Interaction Analysis (PIA): a method for investigating complex gene-gene interactions.
BMC Bioinformatics. 2008 Mar 6;9:146. doi: 10.1186/1471-2105-9-146.
10
Increasing the power of identifying gene x gene interactions in genome-wide association studies.
Genet Epidemiol. 2008 Apr;32(3):255-63. doi: 10.1002/gepi.20300.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验