Suppr超能文献

从无辅基蛋白质结构预测过渡金属结合位点。

Prediction of transition metal-binding sites from apo protein structures.

作者信息

Babor Mariana, Gerzon Sergey, Raveh Barak, Sobolev Vladimir, Edelman Marvin

机构信息

Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Proteins. 2008 Jan 1;70(1):208-17. doi: 10.1002/prot.21587.

Abstract

Metal ions are crucial for protein function. They participate in enzyme catalysis, play regulatory roles, and help maintain protein structure. Current tools for predicting metal-protein interactions are based on proteins crystallized with their metal ions present (holo forms). However, a majority of resolved structures are free of metal ions (apo forms). Moreover, metal binding is a dynamic process, often involving conformational rearrangement of the binding pocket. Thus, effective predictions need to be based on the structure of the apo state. Here, we report an approach that identifies transition metal-binding sites in apo forms with a resulting selectivity >95%. Applying the approach to apo forms in the Protein Data Bank and structural genomics initiative identifies a large number of previously unknown, putative metal-binding sites, and their amino acid residues, in some cases providing a first clue to the function of the protein.

摘要

金属离子对蛋白质功能至关重要。它们参与酶催化,发挥调节作用,并有助于维持蛋白质结构。目前预测金属 - 蛋白质相互作用的工具是基于与存在的金属离子结晶的蛋白质(全酶形式)。然而,大多数解析出的结构不含金属离子(脱辅基形式)。此外,金属结合是一个动态过程,通常涉及结合口袋的构象重排。因此,有效的预测需要基于脱辅基状态的结构。在这里,我们报告了一种方法,该方法能够识别脱辅基形式中过渡金属结合位点,其选择性大于95%。将该方法应用于蛋白质数据库和结构基因组学计划中的脱辅基形式,可识别出大量先前未知的假定金属结合位点及其氨基酸残基,在某些情况下为蛋白质的功能提供了首个线索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验