Schwabe Tobias, Grimme Stefan
Theoretische Organische Chemie, Organisch-Chemisches Institut der Universität Münster, D-48149, Germany.
Phys Chem Chem Phys. 2007 Jul 14;9(26):3397-406. doi: 10.1039/b704725h. Epub 2007 May 29.
The objective of this work is the further systematic improvement of the accuracy of Double-Hybrid Density Functionals (DHDF) that add non-local electron correlation effects to a standard hybrid functional by second-order perturbation theory (S. Grimme, J. Chem. Phys., 2006, 124, 034108). The only known shortcoming of these generally highly accurate functionals is an underestimation of the long-range dispersion (van der Waals) interactions. To correct this deficiency, we add a previously developed empirical dispersion term (DFT-D) to the energy expression but leave the electronic part of the functional untouched. Results are presented for the S22 set of non-covalent interaction energies, the G3/99 set of heat of formations and conformational energies of a phenylalanyl-glycyl-glycine peptide model. We furthermore propose seven hydrocarbon reactions with strong intramolecular dispersion contributions as a benchmark set for newly developed density functionals. In general, the proposed composite approach is for many chemically relevant properties of similar quality as high-level coupled-cluster treatments. A significant increase of the accuracy for non-covalent interactions is obtained and the corrected B2PLYP DHDF provides one of the lowest ever obtained Mean Absolute Deviations (MAD) for the S22 set (0.2-0.3 kcal mol(-1)). Unprecedented high accuracy is also obtained for the relative energies of peptide conformations that turn out to be very difficult. The significant improvements found for the G3/99 set (reduction of the MAD from 2.4 to 1.7 kcal mol(-1)) underline the importance of intramolecular dispersion effects in large molecules. In all tested cases the results from the standard B3LYP approach are also significantly improved, and we recommend the general use of dispersion corrections in DFT treatments.
这项工作的目标是进一步系统地提高双杂化密度泛函(DHDF)的准确性,该泛函通过二阶微扰理论将非局部电子相关效应添加到标准杂化泛函中(S. 格林姆,《化学物理杂志》,2006年,第124卷,034108页)。这些通常具有高精度的泛函唯一已知的缺点是对长程色散(范德华)相互作用的低估。为了纠正这一缺陷,我们在能量表达式中添加了一个先前开发的经验色散项(DFT-D),但保持泛函的电子部分不变。给出了关于非共价相互作用能的S22数据集、苯丙氨酰-甘氨酰-甘氨酸肽模型的生成热和构象能的G3/99数据集的结果。我们还提出了七个具有强分子内色散贡献的烃类反应,作为新开发的密度泛函的基准集。一般来说,所提出的复合方法对于许多化学相关性质而言,其质量与高水平耦合簇处理相当。对于非共价相互作用,准确性有显著提高,校正后的B2PLYP DHDF为S22数据集提供了有史以来最低的平均绝对偏差(MAD)之一(0.2 - 0.3 kcal mol⁻¹)。对于非常困难的肽构象的相对能量,也获得了前所未有的高精度。在G3/99数据集上发现的显著改进(MAD从2.4降低到1.7 kcal mol⁻¹)强调了分子内色散效应在大分子中的重要性。在所有测试案例中,标准B3LYP方法的结果也有显著改善,我们建议在密度泛函理论处理中普遍使用色散校正。