Suppr超能文献

通过机器学习调整杂化密度泛函

Adapting hybrid density functionals with machine learning.

作者信息

Khan Danish, Price Alastair J A, Huang Bing, Ach Maximilian L, von Lilienfeld O Anatole

机构信息

Chemical Physics Theory Group, Department of Chemistry, University of Toronto, St. George Campus, Toronto, ON, Canada.

Vector Institute for Artificial Intelligence, Toronto, ON, Canada.

出版信息

Sci Adv. 2025 Jan 31;11(5):eadt7769. doi: 10.1126/sciadv.adt7769.

Abstract

Exact exchange contributions significantly affect electronic states, influencing covalent bond formation and breaking. Hybrid density functional approximations, which average exact exchange admixtures empirically, have achieved success but fall short of high-level quantum chemistry accuracy due to delocalization errors. We propose adaptive hybrid functionals, generating optimal exact exchange admixture ratios on the fly using data-efficient quantum machine learning models with negligible overhead. The adaptive Perdew-Burke-Ernzerhof hybrid density functional (aPBE0) improves energetics, electron densities, and HOMO-LUMO gaps in QM9, QM7b, and GMTKN55 benchmark datasets. A model uncertainty-based constraint reduces the method smoothly to PBE0 in extrapolative regimes, ensuring general applicability with limited training. By tuning exact exchange fractions for different spin states, aPBE0 effectively addresses the spin gap problem in open-shell systems such as carbenes. We also present a revised QM9 (revQM9) dataset with more accurate quantum properties, including stronger covalent binding, larger bandgaps, more localized electron densities, and larger dipole moments.

摘要

精确交换贡献显著影响电子态,影响共价键的形成与断裂。混合密度泛函近似通过经验平均精确交换混合比取得了成功,但由于离域误差,其未能达到高水平量子化学的精度。我们提出了自适应混合泛函,利用数据高效的量子机器学习模型即时生成最优精确交换混合比,且开销可忽略不计。自适应的佩德韦-伯克-恩泽霍夫混合密度泛函(aPBE0)改善了QM9、QM7b和GMTKN55基准数据集中的能量、电子密度以及最高占据分子轨道-最低未占据分子轨道能隙。基于模型不确定性的约束在推断区域将该方法平滑地简化为PBE0,确保了在有限训练下的普遍适用性。通过为不同自旋态调整精确交换分数,aPBE0有效解决了诸如卡宾等开壳层体系中的自旋能隙问题。我们还展示了一个具有更精确量子性质的修订QM9(revQM9)数据集,包括更强的共价结合、更大的带隙、更局域化的电子密度和更大的偶极矩。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验