Weitzmann C, Tumminia S J, Boublik M, Ofengand J
Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110.
Nucleic Acids Res. 1991 Dec;19(25):7089-95. doi: 10.1093/nar/19.25.7089.
We have partially purified two 16S rRNA-specific methyltransferases, one of which forms m2G966 (m2G MT), while the other one makes m5C967 (m5C MT). The m2G MT uses unmethylated 30S subunits as a substrate, but not free unmethylated 16S rRNA, while the m5C MT functions reciprocally, using free rRNA but not 30S subunits (Nègre, D., Weitzmann, C. and Ofengand, J. (1990) UCLA Symposium: Nucleic Acid Methylation (Alan Liss, New York), pp. 1-17). We have now determined the basis for this unusual inverse specificity at adjacent nucleotides. Binding of ribosomal proteins S7, S9, and S19 to unmodified 16S rRNA individually and in all possible combinations showed that S7 plus S19 were sufficient to block methylation by the m5C MT, while simultaneously inducing methylation by the m2G MT. A purified complex containing stoichiometric amounts of proteins S7, S9, and S19 bound to 16S rRNA was isolated and shown to possess the same methylation properties as 30S subunits, that is, the ability to be methylated by the m2G MT but not by the m5C MT. Since binding of S19 requires prior binding of S7, which had no effect on methylation when bound alone, we attribute the switch in methylase specificity solely to the presence of RNA-bound S19. Single-omission reconstitution of 30S subunits deficient in S19 resulted in particles that could not be efficiently methylated by either enzyme. Thus while binding of S19 is both necessary and sufficient to convert 16S rRNA into a substrate of the m2G MT, binding of either S19 alone or some other protein or combination of proteins to the 16S rRNA can abolish activity of the m5C MT. Binding of S19 to 16S rRNA is known to cause local conformational changes in the 960-975 stem-loop structure surrounding the two methylated nucleotides (Powers, T., Changchien, L.-M., Craven, G. and Noller, H.F. (1988) J. Mol. Biol. 200, 309-319). Our results show that the two ribosomal RNA MTs studied in this work are exquisitely sensitive to this small but nevertheless functionally important structural change.
我们已经部分纯化了两种16S rRNA特异性甲基转移酶,其中一种形成m2G966(m2G甲基转移酶),而另一种形成m5C967(m5C甲基转移酶)。m2G甲基转移酶以未甲基化的30S亚基作为底物,但不以游离的未甲基化16S rRNA为底物,而m5C甲基转移酶的作用则相反,它以游离rRNA为底物但不以30S亚基为底物(内格雷,D.,魏茨曼,C.和奥芬甘德,J.(1990年)加州大学洛杉矶分校研讨会:核酸甲基化(艾伦·利斯出版社,纽约),第1 - 17页)。我们现在已经确定了相邻核苷酸这种不寻常的反向特异性的基础。核糖体蛋白S7、S9和S19单独以及以所有可能组合与未修饰的16S rRNA结合的实验表明,S7加S19足以阻断m5C甲基转移酶的甲基化作用,同时诱导m2G甲基转移酶的甲基化作用。分离出了一种纯化的复合物,其中含有化学计量的与16S rRNA结合的蛋白S7、S9和S19,并且该复合物表现出与30S亚基相同的甲基化特性,即能够被m2G甲基转移酶甲基化但不能被m5C甲基转移酶甲基化。由于S19的结合需要S7先结合,而S7单独结合时对甲基化没有影响,所以我们将甲基化酶特异性的转变完全归因于与RNA结合的S19的存在。对缺乏S19的30S亚基进行单缺失重组,得到的颗粒不能被任何一种酶有效地甲基化。因此,虽然S19的结合对于将16S rRNA转化为m2G甲基转移酶的底物既是必要的也是充分的,但单独S19或其他一些蛋白质或蛋白质组合与16S rRNA的结合都可以消除m5C甲基转移酶的活性。已知S19与16S rRNA的结合会导致围绕两个甲基化核苷酸的960 - 975茎环结构发生局部构象变化(鲍尔斯,T.,张chien,L.-M.,克雷文,G.和诺勒,H.F.(1988年)《分子生物学杂志》200,309 - 319)。我们的结果表明,在这项工作中研究的两种核糖体RNA甲基转移酶对这种微小但功能上很重要的结构变化极其敏感。