Suppr超能文献

基于反弹电流的小脑记忆回忆的锁钥机制。

Lock-and-key mechanisms of cerebellar memory recall based on rebound currents.

作者信息

Wetmore Daniel Z, Mukamel Eran A, Schnitzer Mark J

机构信息

Department of Physics, James H. Clark Center for Biomedical Engineering and Sciences, Stanford University, Stanford, CA 94305-5435, USA.

出版信息

J Neurophysiol. 2008 Oct;100(4):2328-47. doi: 10.1152/jn.00344.2007. Epub 2007 Aug 1.

Abstract

A basic question for theories of learning and memory is whether neuronal plasticity suffices to guide proper memory recall. Alternatively, information processing that is additional to readout of stored memories might occur during recall. We formulate a "lock-and-key" hypothesis regarding cerebellum-dependent motor memory in which successful learning shapes neural activity to match a temporal filter that prevents expression of stored but inappropriate motor responses. Thus, neuronal plasticity by itself is necessary but not sufficient to modify motor behavior. We explored this idea through computational studies of two cerebellar behaviors and examined whether deep cerebellar and vestibular nuclei neurons can filter signals from Purkinje cells that would otherwise drive inappropriate motor responses. In eyeblink conditioning, reflex acquisition requires the conditioned stimulus (CS) to precede the unconditioned stimulus (US) by >100 ms. In our biophysical models of cerebellar nuclei neurons this requirement arises through the phenomenon of postinhibitory rebound depolarization and matches longstanding behavioral data on conditioned reflex timing and reliability. Although CS-US intervals<100 ms may induce Purkinje cell plasticity, cerebellar nuclei neurons drive conditioned responses only if the CS-US training interval was >100 ms. This bound reflects the minimum time for deinactivation of rebound currents such as T-type Ca2+. In vestibulo-ocular reflex adaptation, hyperpolarization-activated currents in vestibular nuclei neurons may underlie analogous dependence of adaptation magnitude on the timing of visual and vestibular stimuli. Thus, the proposed lock-and-key mechanisms link channel kinetics to recall performance and yield specific predictions of how perturbations to rebound depolarization affect motor expression.

摘要

学习与记忆理论的一个基本问题是,神经元可塑性是否足以引导正确的记忆回忆。或者说,在回忆过程中可能会发生除读取存储记忆之外的信息处理。我们针对小脑依赖的运动记忆提出了一种“锁钥”假说,其中成功的学习塑造神经活动,以匹配一个时间滤波器,该滤波器可防止表达存储的但不适当的运动反应。因此,神经元可塑性本身对于改变运动行为是必要的,但并不充分。我们通过对两种小脑行为的计算研究来探索这一观点,并研究小脑深部和前庭核神经元是否能够过滤来自浦肯野细胞的信号,否则这些信号会驱动不适当的运动反应。在眨眼条件反射中,反射习得要求条件刺激(CS)先于非条件刺激(US)超过100毫秒。在我们的小脑核神经元生物物理模型中,这一要求是通过抑制后反弹去极化现象产生的,并且与关于条件反射时间和可靠性的长期行为数据相匹配。尽管CS-US间隔<100毫秒可能会诱导浦肯野细胞可塑性,但只有当CS-US训练间隔>100毫秒时,小脑核神经元才会驱动条件反应。这个界限反映了诸如T型Ca2+等反弹电流去失活的最短时间。在前庭眼反射适应中,前庭核神经元中的超极化激活电流可能是适应幅度对视觉和前庭刺激时间类似依赖性的基础。因此,所提出的锁钥机制将通道动力学与回忆表现联系起来,并对反弹去极化的扰动如何影响运动表达产生具体预测。

相似文献

1
Lock-and-key mechanisms of cerebellar memory recall based on rebound currents.
J Neurophysiol. 2008 Oct;100(4):2328-47. doi: 10.1152/jn.00344.2007. Epub 2007 Aug 1.
2
Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.
IEEE Trans Neural Netw Learn Syst. 2017 Nov;28(11):2748-2762. doi: 10.1109/TNNLS.2016.2598190.
3
Intrinsic and synaptic plasticity in the vestibular system.
Curr Opin Neurobiol. 2006 Aug;16(4):385-90. doi: 10.1016/j.conb.2006.06.012. Epub 2006 Jul 13.
4
Learning in a simple motor system.
Learn Mem. 2004 Mar-Apr;11(2):127-36. doi: 10.1101/lm.65804.
5
Distribution of neural plasticity in cerebellum-dependent motor learning.
Prog Brain Res. 2014;210:79-101. doi: 10.1016/B978-0-444-63356-9.00004-2.
6
Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation.
Neuroscience. 2006 May 12;139(2):767-77. doi: 10.1016/j.neuroscience.2005.12.035. Epub 2006 Feb 3.
8
Time and tide in cerebellar memory formation.
Curr Opin Neurobiol. 2005 Dec;15(6):667-74. doi: 10.1016/j.conb.2005.10.008. Epub 2005 Nov 3.
9
Physiologic basis for motor learning in the vestibulo-ocular reflex.
Otolaryngol Head Neck Surg. 1998 Jul;119(1):43-8. doi: 10.1016/S0194-5998(98)70172-X.
10
The role of the cerebellum in classical conditioning of discrete behavioral responses.
Neuroscience. 2009 Sep 1;162(3):732-55. doi: 10.1016/j.neuroscience.2009.01.041. Epub 2009 Jan 27.

引用本文的文献

1
Decoding brain memory formation by single-cell RNA sequencing.
Brief Bioinform. 2022 Nov 19;23(6). doi: 10.1093/bib/bbac412.
2
Modulatory Effects of Monoamines and Perineuronal Nets on Output of Cerebellar Purkinje Cells.
Front Neural Circuits. 2021 Jun 14;15:661899. doi: 10.3389/fncir.2021.661899. eCollection 2021.
3
Cerebellar plasticity and associative memories are controlled by perineuronal nets.
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6855-6865. doi: 10.1073/pnas.1916163117. Epub 2020 Mar 9.
5
Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice.
Cell Rep. 2015 Dec 1;13(9):1977-88. doi: 10.1016/j.celrep.2015.10.057. Epub 2015 Nov 19.
6
Bidirectional plasticity of Purkinje cells matches temporal features of learning.
J Neurosci. 2014 Jan 29;34(5):1731-7. doi: 10.1523/JNEUROSCI.2883-13.2014.
7
Signal processing by T-type calcium channel interactions in the cerebellum.
Front Cell Neurosci. 2013 Nov 27;7:230. doi: 10.3389/fncel.2013.00230.
8
Modeling the generation of output by the cerebellar nuclei.
Neural Netw. 2013 Nov;47:112-9. doi: 10.1016/j.neunet.2012.11.006. Epub 2012 Nov 21.
9
In vivo analysis of inhibitory synaptic inputs and rebounds in deep cerebellar nuclear neurons.
PLoS One. 2011 Apr 28;6(4):e18822. doi: 10.1371/journal.pone.0018822.
10
Spatiotemporal firing patterns in the cerebellum.
Nat Rev Neurosci. 2011 Jun;12(6):327-44. doi: 10.1038/nrn3011. Epub 2011 May 5.

本文引用的文献

1
Multimodal fast optical interrogation of neural circuitry.
Nature. 2007 Apr 5;446(7136):633-9. doi: 10.1038/nature05744.
2
Synapse-specific reconsolidation of distinct fear memories in the lateral amygdala.
Nat Neurosci. 2007 Apr;10(4):414-6. doi: 10.1038/nn1871. Epub 2007 Mar 11.
3
Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace.
J Neurosci. 2007 Mar 7;27(10):2493-502. doi: 10.1523/JNEUROSCI.4202-06.2007.
4
Dendritic voltage-gated K+ conductance gradient in pyramidal neurones of neocortical layer 5B from rats.
J Physiol. 2007 Mar 15;579(Pt 3):737-52. doi: 10.1113/jphysiol.2006.122564. Epub 2006 Dec 7.
5
Cerebellar modulation of trigeminal reflex blinks: interpositus neurons.
J Neurosci. 2006 Oct 11;26(41):10569-76. doi: 10.1523/JNEUROSCI.0079-06.2006.
6
Selective engagement of plasticity mechanisms for motor memory storage.
Neuron. 2006 Sep 21;51(6):823-34. doi: 10.1016/j.neuron.2006.08.026.
8
Interacting adaptive processes with different timescales underlie short-term motor learning.
PLoS Biol. 2006 Jun;4(6):e179. doi: 10.1371/journal.pbio.0040179. Epub 2006 May 23.
9
Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells.
Nat Neurosci. 2006 Jun;9(6):798-806. doi: 10.1038/nn1698. Epub 2006 May 7.
10
Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons.
Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5555-60. doi: 10.1073/pnas.0601261103. Epub 2006 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验