Wetmore Daniel Z, Mukamel Eran A, Schnitzer Mark J
Department of Physics, James H. Clark Center for Biomedical Engineering and Sciences, Stanford University, Stanford, CA 94305-5435, USA.
J Neurophysiol. 2008 Oct;100(4):2328-47. doi: 10.1152/jn.00344.2007. Epub 2007 Aug 1.
A basic question for theories of learning and memory is whether neuronal plasticity suffices to guide proper memory recall. Alternatively, information processing that is additional to readout of stored memories might occur during recall. We formulate a "lock-and-key" hypothesis regarding cerebellum-dependent motor memory in which successful learning shapes neural activity to match a temporal filter that prevents expression of stored but inappropriate motor responses. Thus, neuronal plasticity by itself is necessary but not sufficient to modify motor behavior. We explored this idea through computational studies of two cerebellar behaviors and examined whether deep cerebellar and vestibular nuclei neurons can filter signals from Purkinje cells that would otherwise drive inappropriate motor responses. In eyeblink conditioning, reflex acquisition requires the conditioned stimulus (CS) to precede the unconditioned stimulus (US) by >100 ms. In our biophysical models of cerebellar nuclei neurons this requirement arises through the phenomenon of postinhibitory rebound depolarization and matches longstanding behavioral data on conditioned reflex timing and reliability. Although CS-US intervals<100 ms may induce Purkinje cell plasticity, cerebellar nuclei neurons drive conditioned responses only if the CS-US training interval was >100 ms. This bound reflects the minimum time for deinactivation of rebound currents such as T-type Ca2+. In vestibulo-ocular reflex adaptation, hyperpolarization-activated currents in vestibular nuclei neurons may underlie analogous dependence of adaptation magnitude on the timing of visual and vestibular stimuli. Thus, the proposed lock-and-key mechanisms link channel kinetics to recall performance and yield specific predictions of how perturbations to rebound depolarization affect motor expression.
学习与记忆理论的一个基本问题是,神经元可塑性是否足以引导正确的记忆回忆。或者说,在回忆过程中可能会发生除读取存储记忆之外的信息处理。我们针对小脑依赖的运动记忆提出了一种“锁钥”假说,其中成功的学习塑造神经活动,以匹配一个时间滤波器,该滤波器可防止表达存储的但不适当的运动反应。因此,神经元可塑性本身对于改变运动行为是必要的,但并不充分。我们通过对两种小脑行为的计算研究来探索这一观点,并研究小脑深部和前庭核神经元是否能够过滤来自浦肯野细胞的信号,否则这些信号会驱动不适当的运动反应。在眨眼条件反射中,反射习得要求条件刺激(CS)先于非条件刺激(US)超过100毫秒。在我们的小脑核神经元生物物理模型中,这一要求是通过抑制后反弹去极化现象产生的,并且与关于条件反射时间和可靠性的长期行为数据相匹配。尽管CS-US间隔<100毫秒可能会诱导浦肯野细胞可塑性,但只有当CS-US训练间隔>100毫秒时,小脑核神经元才会驱动条件反应。这个界限反映了诸如T型Ca2+等反弹电流去失活的最短时间。在前庭眼反射适应中,前庭核神经元中的超极化激活电流可能是适应幅度对视觉和前庭刺激时间类似依赖性的基础。因此,所提出的锁钥机制将通道动力学与回忆表现联系起来,并对反弹去极化的扰动如何影响运动表达产生具体预测。