Johnson Devin S, Laake Jeffrey L, Ver Hoef Jay M
National Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA National Marine Fisheries Service, Seattle, Washington 98115, USA.
Biometrics. 2010 Mar;66(1):310-8. doi: 10.1111/j.1541-0420.2009.01265.x. Epub 2009 May 12.
We consider a fully model-based approach for the analysis of distance sampling data. Distance sampling has been widely used to estimate abundance (or density) of animals or plants in a spatially explicit study area. There is, however, no readily available method of making statistical inference on the relationships between abundance and environmental covariates. Spatial Poisson process likelihoods can be used to simultaneously estimate detection and intensity parameters by modeling distance sampling data as a thinned spatial point process. A model-based spatial approach to distance sampling data has three main benefits: it allows complex and opportunistic transect designs to be employed, it allows estimation of abundance in small subregions, and it provides a framework to assess the effects of habitat or experimental manipulation on density. We demonstrate the model-based methodology with a small simulation study and analysis of the Dubbo weed data set. In addition, a simple ad hoc method for handling overdispersion is also proposed. The simulation study showed that the model-based approach compared favorably to conventional distance sampling methods for abundance estimation. In addition, the overdispersion correction performed adequately when the number of transects was high. Analysis of the Dubbo data set indicated a transect effect on abundance via Akaike's information criterion model selection. Further goodness-of-fit analysis, however, indicated some potential confounding of intensity with the detection function.
我们考虑一种基于完全模型的方法来分析距离抽样数据。距离抽样已被广泛用于在空间明确的研究区域估计动物或植物的丰度(或密度)。然而,目前尚无现成的方法可用于对丰度与环境协变量之间的关系进行统计推断。通过将距离抽样数据建模为稀疏空间点过程,空间泊松过程似然性可用于同时估计检测和强度参数。基于模型的距离抽样数据空间方法有三个主要优点:它允许采用复杂的和机会性的样带设计,它允许估计小子区域内的丰度,并且它提供了一个框架来评估栖息地或实验操作对密度的影响。我们通过一个小型模拟研究和对达博杂草数据集的分析来展示基于模型的方法。此外,还提出了一种处理过度离散的简单临时方法。模拟研究表明,基于模型的方法在丰度估计方面优于传统的距离抽样方法。此外,当样带数量较多时,过度离散校正效果良好。对达博数据集的分析通过赤池信息准则模型选择表明样带对丰度有影响。然而,进一步的拟合优度分析表明强度与检测函数之间存在一些潜在的混杂因素。