Suppr超能文献

相关失效时间数据的竞争风险分析

Competing risks analysis of correlated failure time data.

作者信息

Chen Bingshu E, Kramer Joan L, Greene Mark H, Rosenberg Philip S

机构信息

Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20852, USA.

出版信息

Biometrics. 2008 Mar;64(1):172-9. doi: 10.1111/j.1541-0420.2007.00868.x. Epub 2007 Aug 3.

Abstract

We develop methods for competing risks analysis when individual event times are correlated within clusters. Clustering arises naturally in clinical genetic studies and other settings. We develop a nonparametric estimator of cumulative incidence, and obtain robust pointwise standard errors that account for within-cluster correlation. We modify the two-sample Gray and Pepe-Mori tests for correlated competing risks data, and propose a simple two-sample test of the difference in cumulative incidence at a landmark time. In simulation studies, our estimators are asymptotically unbiased, and the modified test statistics control the type I error. The power of the respective two-sample tests is differentially sensitive to the degree of correlation; the optimal test depends on the alternative hypothesis of interest and the within-cluster correlation. For purposes of illustration, we apply our methods to a family-based prospective cohort study of hereditary breast/ovarian cancer families. For women with BRCA1 mutations, we estimate the cumulative incidence of breast cancer in the presence of competing mortality from ovarian cancer, accounting for significant within-family correlation.

摘要

当个体事件发生时间在聚类内相关时,我们开发了用于竞争风险分析的方法。聚类在临床遗传学研究和其他场景中自然出现。我们开发了累积发病率的非参数估计器,并获得了考虑聚类内相关性的稳健逐点标准误差。我们针对相关竞争风险数据修改了两样本Gray检验和Pepe-Mori检验,并提出了在一个标志性时间点累积发病率差异的简单两样本检验。在模拟研究中,我们的估计器渐近无偏,并且修改后的检验统计量控制了I型错误。各自两样本检验的功效对相关程度的敏感度不同;最优检验取决于感兴趣的备择假设和聚类内相关性。为了说明目的,我们将我们的方法应用于一项基于家庭的遗传性乳腺癌/卵巢癌家庭前瞻性队列研究。对于携带BRCA1突变的女性,我们估计了在存在卵巢癌竞争死亡率的情况下乳腺癌的累积发病率,同时考虑了家庭内的显著相关性。

相似文献

1
Competing risks analysis of correlated failure time data.
Biometrics. 2008 Mar;64(1):172-9. doi: 10.1111/j.1541-0420.2007.00868.x. Epub 2007 Aug 3.
2
Estimating survival and association in a semicompeting risks model.
Biometrics. 2008 Mar;64(1):180-8. doi: 10.1111/j.1541-0420.2007.00872.x. Epub 2007 Jul 23.
3
Nonparametric inference on median residual life function.
Biometrics. 2008 Mar;64(1):157-63. doi: 10.1111/j.1541-0420.2007.00826.x. Epub 2007 May 14.
5
Marginal analysis of correlated failure time data with informative cluster sizes.
Biometrics. 2007 Sep;63(3):663-72. doi: 10.1111/j.1541-0420.2006.00730.x.
6
Semiparametric competing risks regression under interval censoring using the R package intccr.
Comput Methods Programs Biomed. 2019 May;173:167-176. doi: 10.1016/j.cmpb.2019.03.002. Epub 2019 Mar 8.
9
Estimation of distribution function in bivariate competing risk models.
Biom J. 2006 Jun;48(3):399-410. doi: 10.1002/bimj.200510173.
10
Marginal hazards regression for retrospective studies within cohort with possibly correlated failure time data.
Biometrics. 2009 Jun;65(2):405-14. doi: 10.1111/j.1541-0420.2008.01077.x. Epub 2008 May 19.

引用本文的文献

2
Real-World Validation of Molecular International Prognostic Scoring System for Myelodysplastic Syndromes.
J Clin Oncol. 2023 May 20;41(15):2827-2842. doi: 10.1200/JCO.22.01784. Epub 2023 Mar 17.
3
Competing risks model for clustered data based on the subdistribution hazards with spatial random effects.
J Appl Stat. 2021 Feb 8;49(7):1802-1820. doi: 10.1080/02664763.2021.1884208. eCollection 2022.
4
Clinical relevance of clonal hematopoiesis in persons aged ≥80 years.
Blood. 2021 Nov 25;138(21):2093-2105. doi: 10.1182/blood.2021011320.
6
Hierarchical models for semi-competing risks data with application to quality of end-of-life care for pancreatic cancer.
J Am Stat Assoc. 2016;111(515):1075-1095. doi: 10.1080/01621459.2016.1164052. Epub 2016 Oct 18.
7
Familial Risk and Heritability of Colorectal Cancer in the Nordic Twin Study of Cancer.
Clin Gastroenterol Hepatol. 2017 Aug;15(8):1256-1264. doi: 10.1016/j.cgh.2016.12.041. Epub 2017 Jan 24.
8
Methods for generating paired competing risks data.
Comput Methods Programs Biomed. 2016 Oct;135:199-207. doi: 10.1016/j.cmpb.2016.07.027. Epub 2016 Jul 25.
9
Calibrated predictions for multivariate competing risks models.
Lifetime Data Anal. 2014 Apr;20(2):234-51. doi: 10.1007/s10985-013-9260-x. Epub 2013 May 31.
10
A semiparametric random effects model for multivariate competing risks data.
Biometrika. 2010 Mar;97(1):133-145. doi: 10.1093/biomet/asp082.

本文引用的文献

3
Variance estimation for clustered recurrent event data with a small number of clusters.
Stat Med. 2005 Oct 15;24(19):3037-51. doi: 10.1002/sim.2157.
4
Tests for multivariate recurrent events in the presence of a terminal event.
Biostatistics. 2004 Jan;5(1):129-43. doi: 10.1093/biostatistics/5.1.129.
5
A note on robust variance estimation for cluster-correlated data.
Biometrics. 2000 Jun;56(2):645-6. doi: 10.1111/j.0006-341x.2000.00645.x.
6
Nonparametric analysis of recurrent events and death.
Biometrics. 2000 Jun;56(2):554-62. doi: 10.1111/j.0006-341x.2000.00554.x.
7
Statistical methods for dependent competing risks.
Lifetime Data Anal. 1995;1(2):195-204. doi: 10.1007/BF00985770.
8
Non-parametric inference for cumulative incidence functions in competing risks studies.
Stat Med. 1997 Apr 30;16(8):901-10. doi: 10.1002/(sici)1097-0258(19970430)16:8<901::aid-sim543>3.0.co;2-m.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验