Suppr超能文献

用于黄斑光学相干断层扫描(OCT)层分割的层边界演化方法

Layer boundary evolution method for macular OCT layer segmentation.

作者信息

Liu Yihao, Carass Aaron, He Yufan, Antony Bhavna J, Filippatou Angeliki, Saidha Shiv, Solomon Sharon D, Calabresi Peter A, Prince Jerry L

机构信息

Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.

Dept. of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Biomed Opt Express. 2019 Feb 4;10(3):1064-1080. doi: 10.1364/BOE.10.001064. eCollection 2019 Mar 1.

Abstract

Optical coherence tomography (OCT) is used to produce high resolution depth images of the retina and is now the standard of care for in-vivo ophthalmological assessment. It is also increasingly being used for evaluation of neurological disorders such as multiple sclerosis (MS). Automatic segmentation methods identify the retinal layers of the macular cube providing consistent results without intra- and inter-rater variation and is faster than manual segmentation. In this paper, we propose a fast multi-layer macular OCT segmentation method based on a fast level set method. Our framework uses contours in an optimized approach specifically for OCT layer segmentation over the whole macular cube. Our algorithm takes boundary probability maps from a trained random forest and iteratively refines the prediction to subvoxel precision. Evaluation on both healthy and multiple sclerosis subjects shows that our method is statistically better than a state-of-the-art graph-based method.

摘要

光学相干断层扫描(OCT)用于生成视网膜的高分辨率深度图像,现已成为体内眼科评估的护理标准。它也越来越多地用于评估诸如多发性硬化症(MS)等神经系统疾病。自动分割方法可识别黄斑立方体的视网膜层,提供一致的结果,不存在评分者内和评分者间的差异,并且比手动分割更快。在本文中,我们提出了一种基于快速水平集方法的快速多层黄斑OCT分割方法。我们的框架以一种优化的方法使用轮廓,专门用于整个黄斑立方体的OCT层分割。我们的算法从经过训练的随机森林中获取边界概率图,并将预测迭代细化到亚体素精度。对健康受试者和多发性硬化症受试者的评估表明,我们的方法在统计学上优于一种基于图的先进方法。

相似文献

1
Layer boundary evolution method for macular OCT layer segmentation.
Biomed Opt Express. 2019 Feb 4;10(3):1064-1080. doi: 10.1364/BOE.10.001064. eCollection 2019 Mar 1.
2
Multi-layer Fast Level Set Segmentation for Macular OCT.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1445-1448. doi: 10.1109/ISBI.2018.8363844. Epub 2018 May 24.
3
Multiple-object geometric deformable model for segmentation of macular OCT.
Biomed Opt Express. 2014 Mar 4;5(4):1062-74. doi: 10.1364/BOE.5.001062. eCollection 2014 Apr 1.
4
Retinal layer segmentation of macular OCT images using boundary classification.
Biomed Opt Express. 2013 Jun 14;4(7):1133-52. doi: 10.1364/BOE.4.001133. Print 2013 Jul 1.
6
Towards Topological Correct Segmentation of Macular OCT from Cascaded FCNs.
Fetal Infant Ophthalmic Med Image Anal (2017). 2017 Sep;10554:202-209. doi: 10.1007/978-3-319-67561-9_23. Epub 2017 Sep 9.
7
A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field.
Comput Methods Programs Biomed. 2018 Oct;165:235-250. doi: 10.1016/j.cmpb.2018.09.004. Epub 2018 Sep 5.
10
Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT.
Biomed Opt Express. 2019 Sep 12;10(10):5042-5058. doi: 10.1364/BOE.10.005042. eCollection 2019 Oct 1.

引用本文的文献

1
Deep learning network with differentiable dynamic programming for retina OCT surface segmentation.
Biomed Opt Express. 2023 Jun 8;14(7):3190-3202. doi: 10.1364/BOE.492670. eCollection 2023 Jul 1.
2
Longitudinal deep network for consistent OCT layer segmentation.
Biomed Opt Express. 2023 Apr 3;14(5):1874-1893. doi: 10.1364/BOE.487518. eCollection 2023 May 1.
5
Structured layer surface segmentation for retina OCT using fully convolutional regression networks.
Med Image Anal. 2021 Feb;68:101856. doi: 10.1016/j.media.2020.101856. Epub 2020 Oct 14.
6
Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis.
Sci Rep. 2020 May 19;10(1):8242. doi: 10.1038/s41598-020-64803-w.

本文引用的文献

1
Multi-layer Fast Level Set Segmentation for Macular OCT.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1445-1448. doi: 10.1109/ISBI.2018.8363844. Epub 2018 May 24.
2
Towards Topological Correct Segmentation of Macular OCT from Cascaded FCNs.
Fetal Infant Ophthalmic Med Image Anal (2017). 2017 Sep;10554:202-209. doi: 10.1007/978-3-319-67561-9_23. Epub 2017 Sep 9.
3
Intensity inhomogeneity correction of SD-OCT data using macular flatspace.
Med Image Anal. 2018 Jan;43:85-97. doi: 10.1016/j.media.2017.09.008. Epub 2017 Oct 12.
4
Collaborative SDOCT Segmentation and Analysis Software.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10138. doi: 10.1117/12.2254050. Epub 2017 Mar 13.
5
ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.
Biomed Opt Express. 2017 Jul 13;8(8):3627-3642. doi: 10.1364/BOE.8.003627. eCollection 2017 Aug 1.
6
Improving graph-based OCT segmentation for severe pathology in Retinitis Pigmentosa patients.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10137. doi: 10.1117/12.2254849. Epub 2017 Mar 13.
7
Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.
Biomed Opt Express. 2017 Apr 27;8(5):2732-2744. doi: 10.1364/BOE.8.002732. eCollection 2017 May 1.
8
Joint Segmentation of Retinal Layers and Focal Lesions in 3-D OCT Data of Topologically Disrupted Retinas.
IEEE Trans Med Imaging. 2017 Jun;36(6):1276-1286. doi: 10.1109/TMI.2017.2666045. Epub 2017 Feb 8.
9
An adaptive grid for graph-based segmentation in retinal OCT.
Proc SPIE Int Soc Opt Eng. 2014;9034. doi: 10.1117/12.2043040.
10
Retinal nerve fiber layer thickness in amnestic mild cognitive impairment: Case-control study and meta-analysis.
Alzheimers Dement (Amst). 2016 Aug 19;4:85-93. doi: 10.1016/j.dadm.2016.07.004. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验