Suppr超能文献

使用果冻填充框架对包含多目标标记的生物图像进行分割。

Segmentation of biological images containing multitarget labeling using the jelly filling framework.

作者信息

Gadgil Neeraj J, Salama Paul, Dunn Kenneth W, Delp Edward J

机构信息

Purdue University, Video and Image Processing Laboratory, School of Electrical and Computer Engineering, West Lafayette, Indiana, United States.

Indiana University-Purdue University, Indianapolis (IUPUI), School of Electrical and Computer Engineering, Indianapolis, Indiana, United States.

出版信息

J Med Imaging (Bellingham). 2018 Oct;5(4):044006. doi: 10.1117/1.JMI.5.4.044006. Epub 2018 Nov 23.

Abstract

Biomedical imaging when combined with digital image analysis is capable of quantitative morphological and physiological characterizations of biological structures. Recent fluorescence microscopy techniques can collect hundreds of focal plane images from deeper tissue volumes, thus enabling characterization of three-dimensional (3-D) biological structures at subcellular resolution. Automatic analysis methods are required to obtain quantitative, objective, and reproducible measurements of biological quantities. However, these images typically contain many artifacts such as poor edge details, nonuniform brightness, and distortions that vary along different axes, all of which complicate the automatic image analysis. Another challenge is due to "multitarget labeling," in which a single probe labels multiple biological entities in acquired images. We present a "jelly filling" method for segmentation of 3-D biological images containing multitarget labeling. Intuitively, our iterative segmentation method is based on filling disjoint tubule regions of an image with a jelly-like fluid. This helps in the detection of components that are "floating" within a labeled jelly. Experimental results show that our proposed method is effective in segmenting important biological quantities.

摘要

生物医学成像与数字图像分析相结合时,能够对生物结构进行定量的形态学和生理学特征描述。最近的荧光显微镜技术可以从更深的组织体积中收集数百个焦平面图像,从而能够在亚细胞分辨率下对三维(3-D)生物结构进行特征描述。需要自动分析方法来获得生物量的定量、客观和可重复的测量结果。然而,这些图像通常包含许多伪像,如边缘细节差、亮度不均匀以及沿不同轴变化的失真,所有这些都使自动图像分析变得复杂。另一个挑战是由于“多靶点标记”,即单个探针在采集的图像中标记多个生物实体。我们提出了一种“果冻填充”方法,用于分割包含多靶点标记的三维生物图像。直观地说,我们的迭代分割方法基于用类似果冻的流体填充图像中不相交的小管区域。这有助于检测在标记的果冻中“漂浮”的成分。实验结果表明,我们提出的方法在分割重要生物量方面是有效的。

相似文献

7

本文引用的文献

2
Clarifying Tissue Clearing.澄清组织透明化
Cell. 2015 Jul 16;162(2):246-257. doi: 10.1016/j.cell.2015.06.067.
4
Discrete region competition for unknown numbers of connected regions.离散区域对未知数量的连通区域的竞争。
IEEE Trans Image Process. 2012 Aug;21(8):3531-45. doi: 10.1109/TIP.2012.2192129. Epub 2012 Apr 3.
6
Image analysis using mathematical morphology.基于数学形态学的图像分析。
IEEE Trans Pattern Anal Mach Intell. 1987 Apr;9(4):532-50. doi: 10.1109/tpami.1987.4767941.
7
A computational approach to edge detection.一种基于计算的边缘检测方法。
IEEE Trans Pattern Anal Mach Intell. 1986 Jun;8(6):679-98.
8
Cell nuclei and cytoplasm joint segmentation using the sliding band filter.使用滑动带滤波器进行细胞核和细胞质联合分割。
IEEE Trans Med Imaging. 2010 Aug;29(8):1463-73. doi: 10.1109/TMI.2010.2048253. Epub 2010 Jun 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验