Suppr超能文献

通过扩展的斯坦因无偏风险估计器,利用形态学蛇模型和深度去噪器训练对磁共振成像中的乳腺组织进行自动分割。

Automatic breast tissue segmentation in MRIs with morphology snake and deep denoiser training via extended Stein's unbiased risk estimator.

作者信息

Yin Xiao-Xia, Jian Yunxiang, Zhang Yang, Zhang Yanchun, Wu Jianlin, Lu Hui, Su Min-Ying

机构信息

Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China.

Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, CA USA.

出版信息

Health Inf Sci Syst. 2021 Apr 5;9(1):16. doi: 10.1007/s13755-021-00143-x. eCollection 2021 Dec.

Abstract

Accurate segmentation of the breast tissue is a significant challenge in the analysis of breast MR images, especially analysis of breast images with low contrast. Most of the existing methods for breast segmentation are semi-automatic and limited in their ability to achieve accurate results. This is because of difficulties in removing landmarks from noisy magnetic resonance images (MRI). Especially, when tumour is imaged for scanning, how to isolate the tumour region from chest will directly affect the accuracy for tumour to be detected. Due to low intensity levels and the close connection between breast and chest portion in MRIs, this study proposes an innovative, fully automatic and fast segmentation approach which combines histogram with inverse Gaussian gradient for morphology snakes, along with extended Stein's unbiased risk estimator (eSURE) applied for unsupervised learning of deep neural network Gaussian denoisers, aimed at accurate identification of landmarks such as chest and breast.

摘要

在乳腺磁共振成像分析中,尤其是对低对比度乳腺图像的分析,准确分割乳腺组织是一项重大挑战。现有的大多数乳腺分割方法都是半自动的,在获得准确结果的能力方面存在局限。这是因为从有噪声的磁共振图像(MRI)中去除标记点存在困难。特别是,当对肿瘤进行扫描成像时,如何将肿瘤区域与胸部隔离开来将直接影响肿瘤检测的准确性。由于MRI中强度水平较低以及乳腺与胸部部分之间的紧密连接,本研究提出了一种创新的、全自动且快速的分割方法,该方法将直方图与用于形态学蛇形模型的逆高斯梯度相结合,同时将扩展的斯坦无偏风险估计器(eSURE)应用于深度神经网络高斯去噪器的无监督学习,旨在准确识别胸部和乳腺等标记点。

相似文献

4
ENSURE: ENSEMBLE STEIN'S UNBIASED RISK ESTIMATOR FOR UNSUPERVISED LEARNING.确保:用于无监督学习的集成斯坦无偏风险估计器。
Proc IEEE Int Conf Acoust Speech Signal Process. 2021 Jun;2021. doi: 10.1109/icassp39728.2021.9414513.
10
Evaluation of MRI Denoising Methods Using Unsupervised Learning.基于无监督学习的MRI去噪方法评估
Front Artif Intell. 2021 Jun 4;4:642731. doi: 10.3389/frai.2021.642731. eCollection 2021.

本文引用的文献

2
Breast MRI: State of the Art.乳腺 MRI:现状。
Radiology. 2019 Sep;292(3):520-536. doi: 10.1148/radiol.2019182947. Epub 2019 Jul 30.
7
Artificial intelligence in radiology.人工智能在放射学中的应用。
Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5.
9
Delays in Breast Cancer Detection and Treatment in Developing Countries.发展中国家乳腺癌检测与治疗的延误情况。
Breast Cancer (Auckl). 2018 Jan 8;12:1178223417752677. doi: 10.1177/1178223417752677. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验