Pepin Kim M, Kay Shannon L, Golas Ben D, Shriner Susan S, Gilbert Amy T, Miller Ryan S, Graham Andrea L, Riley Steven, Cross Paul C, Samuel Michael D, Hooten Mevin B, Hoeting Jennifer A, Lloyd-Smith James O, Webb Colleen T, Buhnerkempe Michael G
National Wildlife Research Center, United States Department of Agriculture, 4101 Laporte Ave., Fort Collins, CO, 80521, USA.
Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
Ecol Lett. 2017 Mar;20(3):275-292. doi: 10.1111/ele.12732. Epub 2017 Jan 16.
Our ability to infer unobservable disease-dynamic processes such as force of infection (infection hazard for susceptible hosts) has transformed our understanding of disease transmission mechanisms and capacity to predict disease dynamics. Conventional methods for inferring FOI estimate a time-averaged value and are based on population-level processes. Because many pathogens exhibit epidemic cycling and FOI is the result of processes acting across the scales of individuals and populations, a flexible framework that extends to epidemic dynamics and links within-host processes to FOI is needed. Specifically, within-host antibody kinetics in wildlife hosts can be short-lived and produce patterns that are repeatable across individuals, suggesting individual-level antibody concentrations could be used to infer time since infection and hence FOI. Using simulations and case studies (influenza A in lesser snow geese and Yersinia pestis in coyotes), we argue that with careful experimental and surveillance design, the population-level FOI signal can be recovered from individual-level antibody kinetics, despite substantial individual-level variation. In addition to improving inference, the cross-scale quantitative antibody approach we describe can reveal insights into drivers of individual-based variation in disease response, and the role of poorly understood processes such as secondary infections, in population-level dynamics of disease.
我们推断诸如感染力(易感宿主的感染风险)等不可观测疾病动态过程的能力,已经改变了我们对疾病传播机制的理解以及预测疾病动态的能力。传统的推断感染力的方法估计的是时间平均值,并且基于群体水平的过程。由于许多病原体呈现出流行周期,且感染力是个体和群体尺度上各种过程作用的结果,因此需要一个灵活的框架,该框架能够扩展到流行动态,并将宿主体内过程与感染力联系起来。具体而言,野生动物宿主体内的抗体动力学可能是短暂的,并且会产生个体间可重复的模式,这表明个体水平的抗体浓度可用于推断感染后的时间,进而推断感染力。通过模拟和案例研究(小雪雁中的甲型流感和郊狼中的鼠疫耶尔森菌),我们认为,尽管存在大量个体水平的差异,但通过精心的实验和监测设计,群体水平的感染力信号可以从个体水平的抗体动力学中恢复。除了改进推断方法外,我们描述的跨尺度定量抗体方法还可以揭示疾病反应中基于个体的变异驱动因素的见解,以及诸如二次感染等理解不足的过程在疾病群体水平动态中的作用。