Narasimha-Iyer Harihar, Beach James M, Khoobehi Bahram, Roysam Badrinath
Carl Zeiss Meditec, Dublin, CA 94568, USA.
IEEE Trans Biomed Eng. 2007 Aug;54(8):1427-35. doi: 10.1109/TBME.2007.900804.
This paper presents an automated method to identify arteries and veins in dual-wavelength retinal fundus images recorded at 570 and 600 nm. Dual-wavelength imaging provides both structural and functional features that can be exploited for identification. The processing begins with automated tracing of the vessels from the 570-nm image. The 600-nm image is registered to this image, and structural and functional features are computed for each vessel segment. We use the relative strength of the vessel central reflex as the structural feature. The central reflex phenomenon, caused by light reflection from vessel surfaces that are parallel to the incident light, is especially pronounced at longer wavelengths for arteries compared to veins. We use a dual-Gaussian to model the cross-sectional intensity profile of vessels. The model parameters are estimated using a robust M-estimator, and the relative strength of the central reflex is computed from these parameters. The functional feature exploits the fact that arterial blood is more oxygenated relative to that in veins. This motivates use of the ratio of the vessel optical densities (ODs) from images at oxygen-sensitive and oxygen-insensitive wavelengths (ODR = OD600/OD570) as a functional indicator. Finally, the structural and functional features are combined in a classifier to identify the type of the vessel. We experimented with four different classifiers and the best result was given by a support vector machine (SVM) classifier. With the SVM classifier, the proposed algorithm achieved true positive rates of 97% for the arteries and 90% for the veins, when applied to a set of 251 vessel segments obtained from 25 dual wavelength images. The ability to identify the vessel type is useful in applications such as automated retinal vessel oximetry and automated analysis of vascular changes without manual intervention.
本文提出了一种自动方法,用于识别在570纳米和600纳米波长下记录的双波长视网膜眼底图像中的动脉和静脉。双波长成像提供了可用于识别的结构和功能特征。处理过程从对570纳米图像中的血管进行自动追踪开始。将600纳米图像配准到该图像上,并为每个血管段计算结构和功能特征。我们将血管中心反射的相对强度用作结构特征。由与入射光平行的血管表面反射光引起的中心反射现象,在动脉中比在静脉中在更长波长下更为明显。我们使用双高斯模型来模拟血管的横截面强度分布。使用稳健的M估计器估计模型参数,并根据这些参数计算中心反射的相对强度。功能特征利用了动脉血相对于静脉血含氧量更高这一事实。这促使我们将氧敏感和氧不敏感波长图像中血管的光密度(OD)之比(ODR = OD600/OD570)用作功能指标。最后,将结构和功能特征组合在一个分类器中以识别血管类型。我们试验了四种不同的分类器,支持向量机(SVM)分类器给出了最佳结果。使用SVM分类器,当应用于从25幅双波长图像中获得的一组251个血管段时,所提出的算法对动脉的真阳性率达到97%,对静脉的真阳性率达到90%。识别血管类型的能力在诸如自动视网膜血管血氧测定和无需人工干预的血管变化自动分析等应用中很有用。