Suppr超能文献

临床决策建模系统。

Clinical decision modeling system.

作者信息

Shi Haiwen, Lyons-Weiler James

机构信息

Bioinformatics Analysis Core, Genomics and Proteomics Core Laboratories, 3343 Forbes Avenue, Pittsburgh, PA 15260 USA.

出版信息

BMC Med Inform Decis Mak. 2007 Aug 13;7:23. doi: 10.1186/1472-6947-7-23.

Abstract

BACKGROUND

Decision analysis techniques can be applied in complex situations involving uncertainty and the consideration of multiple objectives. Classical decision modeling techniques require elicitation of too many parameter estimates and their conditional (joint) probabilities, and have not therefore been applied to the problem of identifying high-performance, cost-effective combinations of clinical options for diagnosis or treatments where many of the objectives are unknown or even unspecified.

METHODS

We designed a Java-based software resource, the Clinical Decision Modeling System (CDMS), to implement Naïve Decision Modeling, and provide a use case based on published performance evaluation measures of various strategies for breast and lung cancer detection. Because cost estimates for many of the newer methods are not yet available, we assume equal cost. Our use case reveals numerous potentially high-performance combinations of clinical options for the detection of breast and lung cancer.

RESULTS

Naïve Decision Modeling is a highly practical applied strategy which guides investigators through the process of establishing evidence-based integrative translational clinical research priorities. CDMS is not designed for clinical decision support. Inputs include performance evaluation measures and costs of various clinical options. The software finds trees with expected emergent performance characteristics and average cost per patient that meet stated filtering criteria. Key to the utility of the software is sophisticated graphical elements, including a tree browser, a receiver-operator characteristic surface plot, and a histogram of expected average cost per patient. The analysis pinpoints the potentially most relevant pairs of clinical options ('critical pairs') for which empirical estimates of conditional dependence may be critical. The assumption of independence can be tested with retrospective studies prior to the initiation of clinical trials designed to estimate clinical impact. High-performance combinations of clinical options may exist for breast and lung cancer detection.

CONCLUSION

The software could be found useful in simplifying the objective-driven planning of complex integrative clinical studies without requiring a multi-attribute utility function, and it could lead to efficient integrative translational clinical study designs that move beyond simple pair wise competitive studies. Collaborators, who traditionally might compete to prioritize their own individual clinical options, can use the software as a common framework and guide to work together to produce increased understanding on the benefits of using alternative clinical combinations to affect strategic and cost-effective clinical workflows.

摘要

背景

决策分析技术可应用于涉及不确定性和多目标考量的复杂情形。经典决策建模技术需要获取过多的参数估计值及其条件(联合)概率,因此尚未应用于识别用于诊断或治疗的高性能、成本效益佳的临床方案组合的问题,其中许多目标未知甚至未明确。

方法

我们设计了一个基于Java的软件资源,即临床决策建模系统(CDMS),以实施朴素决策建模,并基于已发表的各种乳腺癌和肺癌检测策略的性能评估指标提供一个用例。由于许多较新方法的成本估计尚不可用,我们假设成本相等。我们的用例揭示了众多用于乳腺癌和肺癌检测的潜在高性能临床方案组合。

结果

朴素决策建模是一种高度实用的应用策略,可指导研究人员建立基于证据的综合转化临床研究优先级的过程。CDMS并非设计用于临床决策支持。输入包括性能评估指标和各种临床方案的成本。该软件会找到具有预期涌现性能特征和符合既定筛选标准的每位患者平均成本的树状图。该软件实用性的关键在于复杂的图形元素,包括树状浏览器、接收者操作特征曲面图以及每位患者预期平均成本的直方图。该分析确定了潜在最相关的临床方案对(“关键对”),对于这些对,条件依赖性的实证估计可能至关重要。独立性假设可在旨在估计临床影响的临床试验启动前通过回顾性研究进行检验。乳腺癌和肺癌检测可能存在高性能的临床方案组合。

结论

该软件可能有助于简化复杂综合临床研究的目标驱动规划,而无需多属性效用函数,并且可能导致高效的综合转化临床研究设计,超越简单的两两竞争性研究。传统上可能会竞相优先考虑各自临床方案的合作者,可以将该软件用作共同框架和指南,共同努力,以增进对使用替代临床组合影响战略和成本效益佳的临床工作流程益处的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a88d/2131745/51d4b4ed9a8b/1472-6947-7-23-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验