Suppr超能文献

引导式回归树构建:应用于奥地利健康数据的 DRG 系统的模型搜索。

Regression tree construction by bootstrap: model search for DRG-systems applied to Austrian health-data.

机构信息

Department of Medical Statistics, Informatics and Health Economics, Innsbruck Medical University, Schoepfstrasse 41/1, 6020 Innsbruck, Austria.

出版信息

BMC Med Inform Decis Mak. 2010 Feb 3;10:9. doi: 10.1186/1472-6947-10-9.

Abstract

BACKGROUND

DRG-systems are used to allocate resources fairly to hospitals based on their performance. Statistically, this allocation is based on simple rules that can be modeled with regression trees. However, the resulting models often have to be adjusted manually to be medically reasonable and ethical.

METHODS

Despite the possibility of manual, performance degenerating adaptations of the original model, alternative trees are systematically searched. The bootstrap-based method bumping is used to build diverse and accurate regression tree models for DRG-systems. A two-step model selection approach is proposed. First, a reasonable model complexity is chosen, based on statistical, medical and economical considerations. Second, a medically meaningful and accurate model is selected. An analysis of 8 data-sets from Austrian DRG-data is conducted and evaluated based on the possibility to produce diverse and accurate models for predefined tree complexities.

RESULTS

The best bootstrap-based trees offer increased predictive accuracy compared to the trees built by the CART algorithm. The analysis demonstrates that even for very small tree sizes, diverse models can be constructed being equally or even more accurate than the single model built by the standard CART algorithm.

CONCLUSIONS

Bumping is a powerful tool to construct diverse and accurate regression trees, to be used as candidate models for DRG-systems. Furthermore, Bumping and the proposed model selection approach are also applicable to other medical decision and prognosis tasks.

摘要

背景

DRG 系统用于根据医院的绩效公平地分配资源。从统计学上讲,这种分配是基于可以用回归树建模的简单规则。然而,所得到的模型通常必须手动调整,以使其在医学上合理和合乎道德。

方法

尽管原始模型可能会进行手动、性能降低的调整,但仍会系统地搜索替代树。基于引导的方法 bumping 用于为 DRG 系统构建多样化且准确的回归树模型。提出了一种两步模型选择方法。首先,根据统计、医学和经济方面的考虑,选择合理的模型复杂度。其次,选择有医学意义且准确的模型。对来自奥地利 DRG 数据的 8 个数据集进行了分析,并根据为预定义树复杂度生成多样化且准确模型的可能性进行了评估。

结果

与 CART 算法构建的树相比,基于引导的最佳树提供了更高的预测准确性。分析表明,即使对于非常小的树大小,也可以构建多样化的模型,其准确性与标准 CART 算法构建的单个模型相当甚至更高。

结论

Bumping 是构建多样化且准确的回归树的有力工具,可作为 DRG 系统的候选模型。此外,Bumping 和所提出的模型选择方法也适用于其他医学决策和预后任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5540/2828419/aaf8a7ab43e8/1472-6947-10-9-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验