Suppr超能文献

内皮型一氧化氮合酶的氧代谢

Oxygen metabolism by endothelial nitric-oxide synthase.

作者信息

Gao Ying Tong, Roman Linda J, Martásek Pavel, Panda Satya Prakash, Ishimura Yuzuru, Masters Bettie Sue S

机构信息

Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900.

Department of Pediatrics, Charles University School of Medicine I, 128 08 Prague, Czech Republic.

出版信息

J Biol Chem. 2007 Sep 28;282(39):28557-28565. doi: 10.1074/jbc.M704890200. Epub 2007 Aug 13.

Abstract

Nitric-oxide synthase (NOS) catalyzes both coupled and uncoupled reactions that generate nitric oxide and reactive oxygen species. Oxygen is often the overlooked substrate, and the oxygen metabolism catalyzed by NOS has been poorly defined. In this paper we focus on the oxygen stoichiometry and effects of substrate/cofactor binding on the endothelial NOS isoform (eNOS). In the presence of both L-arginine and tetrahydrobiopterin, eNOS is highly coupled (>90%), and the measured stoichiometry of O(2)/NADPH is very close to the theoretical value. We report for the first time that the presence of L-arginine stimulates oxygen uptake by eNOS. The fact that nonhydrolyzable L-arginine analogs are not stimulatory indicates that the occurrence of the coupled reaction, rather than the accelerated uncoupled reaction, is responsible for the L-arginine-dependent stimulation. The presence of 5,6,7,8-tetrahydrobiopterin quenched the uncoupled reactions and resulted in much less reactive oxygen species formation, whereas the presence of redox-incompetent 7,8-dihydrobiopterin demonstrates little quenching effect. These results reveal different mechanisms for oxygen metabolism for eNOS as opposed to nNOS and, perhaps, partially explain their functional differences.

摘要

一氧化氮合酶(NOS)催化产生一氧化氮和活性氧的偶联反应和解偶联反应。氧气常常是被忽视的底物,并且由NOS催化的氧代谢一直未得到很好的界定。在本文中,我们重点关注氧化学计量以及底物/辅因子结合对内皮型NOS同工型(eNOS)的影响。在同时存在L-精氨酸和四氢生物蝶呤的情况下,eNOS高度偶联(>90%),并且测得的O₂/NADPH化学计量非常接近理论值。我们首次报道L-精氨酸的存在会刺激eNOS对氧的摄取。不可水解的L-精氨酸类似物无刺激作用这一事实表明,是偶联反应的发生而非加速的解偶联反应导致了L-精氨酸依赖性刺激。5,6,7,8-四氢生物蝶呤的存在抑制了解偶联反应,并导致活性氧的生成大大减少,而无氧化还原活性的7,8-二氢生物蝶呤的存在几乎没有抑制作用。这些结果揭示了eNOS与nNOS不同的氧代谢机制,并且可能部分解释了它们的功能差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验