Suppr超能文献

脊柱密度的估计方法——脊柱在整个树突区域分布均匀吗?

Methods of estimation of spine density--are spines evenly distributed throughout the dendritic field?

作者信息

Horner C H, Arbuthnott E

机构信息

Department of Anatomy, Trinity College, Dublin, Ireland.

出版信息

J Anat. 1991 Aug;177:179-84.

Abstract

Dendritic spines are small protrusions extending from the dendrites of nerve cells, which bear the majority of synapses. In the past, researchers quantified spine density as the number of visible spines per estimated micrometre of dendrite. This estimate ignores all those spines hidden from view due to their position on the dendrite. Dendrites vary in diameter and the underestimation in some will be greater than others. Estimation of dendritic length is also subjective and difficult in those which are tortuous. The Felman & Peters (1979) geometrical equation takes account of these criteria and provides a method of estimating 'true' spine numbers which does not involve slow and laborious reconstruction. This study compares ratios derived from both methods of estimation (spine density 2:1) at three loci in three experimental groups. Mean values of dendritic diameters and spine dimensions show the major cause for variation in the ratios between loci to be the shaft diameter of the dendrite. However, the greater ratio for apical as compared with basal and oblique dendrites is not as great as expected, bearing in mind that apical dendrites are approximately 2.5 times larger than oblique and basal dendrites. Therefore the spine distribution may not be the same throughout the dendritic field. Estimations of spine density based on visible spine counts are quicker, easier and sufficient for comparisons within the same locus. 'True' estimates (spine density 2) are more accurate and should be used when comparisons are being made between loci, cell types and species.

摘要

树突棘是从神经细胞的树突延伸出的小突起,大多数突触都位于其上。过去,研究人员将棘密度量化为每估计微米树突上可见棘的数量。这种估计忽略了所有因位于树突上而隐藏起来的棘。树突的直径各不相同,有些树突的低估程度会比其他树突更大。在那些曲折的树突中,树突长度的估计也是主观且困难的。费尔曼和彼得斯(1979年)的几何方程考虑了这些标准,并提供了一种估计“真实”棘数量的方法,该方法不涉及缓慢且费力的重建。本研究比较了三个实验组中三个位点的两种估计方法(棘密度2:1)得出的比率。树突直径和棘尺寸的平均值表明,位点之间比率变化的主要原因是树突的轴径。然而,考虑到顶树突比斜树突和基底树突大约大2.5倍,顶树突与基底树突和斜树突相比更大的比率并不像预期的那么大。因此,整个树突区域的棘分布可能不一样。基于可见棘计数的棘密度估计更快、更容易,并且足以在同一位点内进行比较。“真实”估计(棘密度2)更准确,在比较不同位点、细胞类型和物种时应使用。

相似文献

3
A technique for estimating total spine numbers on Golgi-impregnated dendrites.
J Comp Neurol. 1979 Dec 15;188(4):527-42. doi: 10.1002/cne.901880403.
8
Analysis of dendritic spines in rat CA1 pyramidal cells intracellularly filled with a fluorescent dye.
J Comp Neurol. 1995 Mar 6;353(2):260-74. doi: 10.1002/cne.903530208.

引用本文的文献

6
mTOR-Dependent Spine Dynamics in Autism.自闭症中依赖于mTOR的树突棘动力学
Front Mol Neurosci. 2022 Jun 15;15:877609. doi: 10.3389/fnmol.2022.877609. eCollection 2022.

本文引用的文献

2
Long-term status of pyramidal cell axon collaterals and apical dendritic spines in denervated cortex.
Brain Res. 1972 Jun 22;41(2):249-62. doi: 10.1016/0006-8993(72)90501-x.
5
Meynert cells in the primate visual cortex.
J Neurocytol. 1974 Nov;3(5):631-58. doi: 10.1007/BF01097628.
7
Loss of dendritic spines in aging cerebral cortex.
Anat Embryol (Berl). 1975 Dec 31;148(3):279-301. doi: 10.1007/BF00319848.
8
Morphological alterations in hippocampus after long-term alcohol consumption in mice.
Science. 1978 Aug 18;201(4356):646-8. doi: 10.1126/science.566953.
9
A technique for estimating total spine numbers on Golgi-impregnated dendrites.
J Comp Neurol. 1979 Dec 15;188(4):527-42. doi: 10.1002/cne.901880403.
10
A reliable Golgi-Kopsch modification.一种可靠的高尔基-科普施改良法。
Brain Res Bull. 1979 Jan-Feb;4(1):127-9. doi: 10.1016/0361-9230(79)90067-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验