Eaton William A, Henry Eric R, Hofrichter James, Bettati Stefano, Viappiani Cristiano, Mozzarelli Andrea
Laboratory of Chemical Physics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.
IUBMB Life. 2007 Aug-Sep;59(8-9):586-99. doi: 10.1080/15216540701272380.
We compare various allosteric models that have been proposed to explain cooperative oxygen binding to hemoglobin, including the two-state allosteric model of Monod, Wyman, and Changeux (MWC), the Cooperon model of Brunori, the model of Szabo and Karplus (SK) based on the stereochemical mechanism of Perutz, the generalization of the SK model by Lee and Karplus (SKL), and the Tertiary Two-State (TTS) model of Henry, Bettati, Hofrichter and Eaton. The preponderance of experimental evidence favors the TTS model which postulates an equilibrium between high (r)- and low (t)-affinity tertiary conformations that are present in both the T and R quaternary structures. Cooperative oxygenation in this model arises from the shift of T to R, as in MWC, but with a significant population of both r and t conformations in the liganded T and in the unliganded R quaternary structures. The TTS model may be considered a combination of the SK and SKL models, and these models provide a framework for a structural interpretation of the TTS parameters. The most compelling evidence in favor of the TTS model is the nanosecond - millisecond carbon monoxide (CO) rebinding kinetics in photodissociation experiments on hemoglobin encapsulated in silica gels. The polymeric network of the gel prevents any tertiary or quaternary conformational changes on the sub-second time scale, thereby permitting the subunit conformations prior to CO photodissociation to be determined from their ligand rebinding kinetics. These experiments show that a large fraction of liganded subunits in the T quaternary structure have the same functional conformation as liganded subunits in the R quaternary structure, an experimental finding inconsistent with the MWC, Cooperon, SK, and SKL models, but readily explained by the TTS model as rebinding to r subunits in T. We propose an additional experiment to test another key prediction of the TTS model, namely that a fraction of subunits in the unliganded R quaternary structure has the same functional conformation (t) as unliganded subunits in the T quaternary structure.
我们比较了各种为解释血红蛋白与氧的协同结合而提出的变构模型,包括莫诺德、怀曼和尚热(MWC)的两态变构模型、布鲁诺里的协同子模型、基于佩鲁茨立体化学机制的萨博和卡尔普斯(SK)模型、李和卡尔普斯对SK模型的推广(SKL)以及亨利、贝塔蒂、霍弗里希特和伊顿的三级两态(TTS)模型。大量实验证据支持TTS模型,该模型假定在T和R四级结构中均存在高亲和力(r)和低亲和力(t)三级构象之间的平衡。此模型中的协同氧合作用如同MWC模型那样,源于T向R的转变,但在结合配体的T和未结合配体的R四级结构中,r和t构象均有显著比例。TTS模型可被视为SK和SKL模型的结合,并且这些模型为TTS参数的结构解释提供了框架。支持TTS模型的最有说服力的证据是在硅胶包封的血红蛋白光解离实验中,一氧化碳(CO)重新结合的纳秒至毫秒级动力学。凝胶的聚合物网络在亚秒时间尺度上阻止了任何三级或四级构象变化,从而使得能够根据配体重新结合动力学确定CO光解离之前的亚基构象。这些实验表明,T四级结构中很大一部分结合配体的亚基具有与R四级结构中结合配体的亚基相同的功能构象,这一实验发现与MWC、协同子、SK和SKL模型不一致,但TTS模型很容易将其解释为T中r亚基的重新结合。我们提出了一项额外实验,以检验TTS模型的另一个关键预测,即未结合配体的R四级结构中的一部分亚基具有与未结合配体的T四级结构中的亚基相同的功能构象(t)。